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We begin by investigating analogues of the Ravenel conjectures in chromatic homotopy in

the setting of Real-oriented homotopy theory, where one carries the data of canonical group

actions by the cyclic group of order 2 via complex conjugation. This analysis yields a formula

for Bousfield localization of C2-spectra at the Real Johnson-Wilson theories, ER(n), from

which follows a smash product theorem and a chromatic convergence theorem for cofree

C2-spectra.

We turn to a systematic study of cofreeness in Real-oriented homotopy theory and estab-

lish the cofreeness of the norms of Real bordism theory, NC2n

C2
MUR, for all n ≥ 1, recovering

a result of Hu and Kriz at n = 1. The method of proof establishes a connection to the Segal

conjecture for C2 - also known as Lin’s theorem - and yields a new, conceptual proof of this

classical result.

We finish by bringing various equivariant spectra in Real-oriented homotopy theory into

the world of stacks and chromatic homotopy by applying a method of Hopkins’ to their

fixed point spectra. We demonstrate this in detail for the Real Johnson-Wilson theories and

give several modular descriptions of the stacksMER(n), recovering and generalizing Hopkins’

description at n = 1 ofMKO as the moduli stack of nonsingular quadratic equations.
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Chapter 1

INTRODUCTION

In this dissertation, we investigate the relationship between classical chromatic homotopy

theory and its equivariant analogues in the context of Real-oriented homotopy theory. Real-

oriented homotopy theory studies various complex-oriented cohomology theories together

with their canonical complex conjugation actions, which lift these theories to genuine equiv-

ariant spectra known as Real-oriented cohomology theories. Chromatic homotopy is the

study of complex-oriented cohomology theories, many of which are localizations of quotients

of the complex bordism spectrum MU . Real-oriented homotopy theory thus began with

Fujii [24] and Landweber [53] who defined the equivariant cohomology theory MUR, known

as Real bordism theory, which lifts MU to a genuine C2-spectrum acted on via complex

conjugation. Several decades later, Hu-Kriz lifted many complex-oriented cohomology the-

ories to the Real-oriented setting by constructing various localizations of quotients of MUR

- as C2-spectra - and demonstrated their computational viability [48]. A notable example

of a family of such Real-oriented theories is given by the Real Johnson-Wilson theories,

ER(n). Kitchloo-Wilson have studied these extensively and used them to give new results

on non-immersions of real projective spaces [50].

In their landmark solution to the Kervaire Invariant problem, Hill-Hopkins-Ravenel

(HHR) dramatically advanced this program by introducing larger groups of equivariance

by use of symmetric monoidal structures [39]. In particular, they constructed a homotopi-

cally meaningful notion of tensor induction of G-spectra - known as the norm - and they

used the norms of Real bordism theory NC2n

C2
MUR, a C2n-spectrum, to solve the Kervaire

Invariant problem. They gave a powerful way of understanding these norms via the slice

filtration, a filtration of a G-spectrum that lifts the Postnikov filtration of spectra and filters
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via representation spheres. They completely determined the slice filtration of the norms of

Real bordism theory, allowing for a host of equivariant computations that were previously

inaccessible.

Real-oriented homotopy and the slice filtration thus provide a strong analogy between

chromatic homotopy in the classical setting and the corresponding approaches in the C2n-

equivariant setting. We investigate the Ravenel conjectures in the context of this analogy and

give an approach for understanding the fixed points of a Real-oriented cohomology theory in

classical chromatic homotopy.

1.1 The Ravenel conjectures in Real-oriented homotopy theory

Chromatic homotopy has proven to be the dominant perspective on the large-scale, cat-

egorical structure of stable homotopy theory. This is most clearly demonstrated by the

Ravenel conjectures, most of which were proven by Devinatz, Hopkins, and Smith [21].

Ravenel made a series of conjectures in [78] that were motivated by nilpotence and periodic-

ity phenomena observed in the Adams-Novikov spectral sequence. We focus on two of these

theorems: the smash product theorem and the chromatic convergence theorem. The smash

product theorem states that for any spectrum X, the Bousfield localization functor at the

n-th Johnson-Wilson theory E(n) is given by the formula

LE(n)(X) = LE(n)(S0) ∧X

Localization at E(n) is thus said to be smashing. This implies (and is equivalent to) the

claim that LE(n)(−) commutes with colimits. The chromatic convergence theorem states

that for a finite p-local spectrum X, the chromatic tower

⋯→ LE(n)(X)→ LE(n−1)(X)→ ⋯→ LE(1)(X)→ LE(0)(X)

converges, in the sense that the canonical map

X → lim←ÐLE(n)(X)
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is an equivalence. The latter theorem implies that the category of finite p-local spectra can

be recovered from its chromatic localizations, and the former states that these localizations

are well-behaved: in particular, they behave like Zariski localization at an open subscheme.

In C2-spectra, we establish the following analogous formulae.

Theorem 1.1.1. Let X ∈ SpC2. The Bousfield localization of X at ER(n) - the n-th Real

Johnson-Wilson theory - is given by

LER(n)(X) = F (EC2+, LER(n)(S0) ∧X)

Theorem 1.1.2. Let X be a finite 2-local C2-spectrum. The ER(n)-chromatic tower at X

converges to F (EC2+,X), in the sense that one has

X lim←ÐLER(n)(X)

F (EC2+,X)
≃

We establish these formulae based on the observation that ER(n) is actually Bousfield

equivalent to the induced C2-spectrum C2+ ∧E(n). We thus study the behavior of smash-

ing Bousfield localizations along various change-of-group functors and obtain a necessary

and sufficient condition for a smashing localization to remain smashing upon applying an

induction functor, from which the above formulae follow.

These formulae are not an exact lift of the classical formulae, however. In each of them,

it was necessary to apply the cofree functor F (EC2+,−) to get a correct formula. It may

be more accurately stated that these are analogues of the Ravenel conjectures in Borel C2-

spectra, rather than genuine C2-spectra.

1.2 Cofreeness in Real-oriented homotopy

MUR and Real-oriented cohomology theories behave very similarly to their non-equivariant

counterparts, as evidenced by the slice filtration. However, the above results indicate that
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the theorems we might expect to hold in Real-oriented homotopy hold only after applying

the cofree functor. From another perspective, this is perhaps not unexpected, as Hu-Kriz

showed that MUR - the universal Real-oriented cohomology theory - is cofree [48]. We thus

investigate the role of cofreeness in Real-oriented theories with larger groups of equivariance,

as introduced by Hill-Hopkins-Ravenel [39]. We establish that the norms of Real bordism

theory, NC2n

C2
MUR are cofree for all n ≥ 1.

Theorem 1.2.1. For all n ≥ 1, the map of C2n-spectra

NC2n

C2
MUR → F (EC2n+,N

C2n

C2
MUR)

is an equivalence. That is, the C2n-spectrum NC2n

C2
MUR is cofree.

Our method is a proof of concept for applying chromatic techniques in the C2n-equivariant

context. In particular, in chromatic homotopy, one may take chromatic localizations by

inverting various vn-classes on MU -module spectra. In Real-oriented homotopy, one has

analogous classes N(ti) which one may invert on NC2n

C2
MUR-module spectra. It is easy to

show that the localized theories NC2n

C2
MUR[N(ti)−1] are cofree, and the category of cofree

C2n-spectra is closed under homotopy limits. Therefore, proceeding via a local cohomology

approach, one has formally that the C2n-spectra

L̃k(NC2n

C2
MUR) ∶= holim{i1,...,ij}∈P0([k])N

C2n

C2
MUR[(N(ti1⋯tij)−1]

formed via limits of local cohomology hypercubes are cofree, where P0([k]) is the poset of

non-empty subsets of [k] = {1, . . . , k}. By use of the slice theorem of Hill-Hopkins-Ravenel,

we show that the map

NC2n

C2
MUR → lim←Ð L̃k(N

C2n

C2
MUR)

is an equivalence, establishing the result.

The Segal conjecture for C2 was proven by Lin via difficult computations in the Adams

spectral sequence [56]. Lin’s theorem has received new attention recently as equivariant
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homotopy has experienced a renaissance following the Hill-Hopkins-Ravenel solution of the

Kervaire Invariant problem (see [74], [67], and [35] for example). In particular, Nikolaus

and Scholze established an equivalent formulation of Lin’s theorem, showing that the most

general form of the Segal conjecture for C2 is equivalent to the claim that the C2-spectrum

NC2
e HF2 is cofree [74]. We use the equivalence of C2-spectra ΦC2NC4

C2
BPR ≃ NC2

e HF2 to show

that Lin’s theorem follows from the claim that NC4

C2
MUR is cofree. This gives a new proof

of Lin’s theorem that is strongly conceptual and involves no homological algebra.

1.3 Stacks and chromatic measure

Real-oriented homotopy theory is built to mirror chromatic homotopy in the equivariant

setting by observing that many of the known results in chromatic homotopy remain true

when carrying a group action. In fact, the information flows the other way as well, in that

non-equivariant homotopy is informed by the study of fixed point spectra of various Real-

oriented theories. The phenomenon is perhaps best illustrated through the example KO,

real topological K-theory. KO, unlike complex K-theory KU , is not complex-oriented, and

therefore does not fit into the chromatic viewpoint as easily. Hopkins circumvents this by the

following procedure: if E is a homotopy commutative ring spectrum with the property that

the graded ring MU∗E is concentrated in even degrees, one may form the Hopf algebroid

(MU∗E,MU∗(MU ∧E))

and call the associated stackME [22]. ME comes equipped with a canonical affine morphism

φE ∶ ME → MFG to the moduli stack of formal groups. This therefore associates to E a

moduli problem related to formal groups. In the case KO, Hopkins establishes the surprising

result that MKO is equivalent to the moduli stack of nonsingular quadratic equations (see

Proposition 6.3.4 in the case n = 1).

Our analysis begins with the observation that KO is in fact the fixed point spectrum of

the Real-oriented cohomology theory ER(1) (equivalently, Atiyah’s Real K-theory KR), i.e.
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KO = ER(1)C2 . We thus have an obvious recipe to bring equivariant cohomology theories

into the context of chromatic homotopy and moduli of formal groups: for E ∈ SpG, we

associate to E the stack MEG . We study this stack for E = ER(n) at all n, recovering

Hopkins’ result and relating larger n to various moduli problems.

Along the way, we define chromatic measure:

Definition 1.3.1. Let X(n) be Ravenel’s Thom spectrum over ΩSU(n) as in [79, 9.1]. For

E a homotopy commutative ring spectrum, define the chromatic measure of E to be the

integer

Φ(E) = min{n ≥ 0 : R ∧X(n) is complex-oriented}

This is roughly a measure of how far E is from being complex-oriented, and it is straight-

forward to compute given knowledge ofME. We compute Φ(E) when E = (ER(n))C2 is the

fixed points of the n-th Real Johnson-Wilson theory.

Theorem 1.3.2. Φ(ER(n)C2) = 2n. In particular, ER(n)C2 ∧X(2n) is complex orientable.

We also discuss an approach to computing Φ(BPR⟨n⟩C2) which will be the subject of

future work. We demonstrate how to compute Φ(EOn) for EOn a higher real K-theory

spectrum in terms of the valuation ν on the endomorphism ring End(G) of the corresponding

formal group G of height n, and make an explicit calculation in a family of special cases

corresponding to roots of unity. Specifically, if n = k(p − 1), one has a tower of division

algebras

Qp ⊂ Qp(ζp) ⊂ End(Γ)[1/p]

Moreover, ζkp −1 is a uniformizer of OQp(ζp) and it follows that ζkp −1 generates a Cp-subgroup

of the Morava stabilizer group (see [86]). This Cp-subgroup acts on the corresponding Morava

E-theory Ek(p−1), and we have:

Theorem 1.3.3. Let EOk(p−1) denote the homotopy fixed point spectrum (Ek(p−1))hCp, then

Φ(EOk(p−1)) = pk. In particular EOk(p−1) ∧X(pk) is complex orientable.
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We remark that the above approach is a natural way to bring equivariant ring spectra

into the chromatic picture. In particular, if E is a G-spectrum, and i∗eE - the underlying

spectrum of E - is complex-orientable, then there is a G-action on the formal group GE

corresponding to i∗eE. The stacks approach records this automorphism data as a part of the

geometry and allows us to compare the moduli problems Spec(π2∗(i∗eE))/G andMEG .

1.4 Organization of the dissertation

In the second and third chapters, we discuss preliminaries needed for our results on

genuine G-spectra. Chapter 2 begins with a detailed exposition of the theory of stacks,

with an emphasis on locally presentable stacks and their relationship to Hopf algebroids.

We give a detailed analysis of the geometry of the moduli stack of formal groupsMFG and

detail the chromatic approach to stable homotopy theory from the viewpoint of stacks and

the Ravenel conjectures. Chapter 3 sets up the foundations for genuine equivariant stable

homotopy theory with an emphasis on G = C2n . In particular, we review the theory of Real

orientations of C2-spectra and discuss analogous notions developed for C2n-spectra in [39],

from the point of view of the slice filtration. The chapter finishes by giving a proof that the

classical Segal conjecture for Cp is implied by the claim that the Tate diagonal

S0 → (S0)tCp

is a p-complete equivalence. In Chapter 4, we establish the analogues of the smash product

and chromatic convergence theorems in cofree C2-spectra by a general analysis of smashing

localizations and their behavior under change-of-group functors. This chapter follows closely

the author’s results in [18]. In Chapter 5, we establish the cofreeness of the norms of Real

bordism theory, using the slice theorem of Hill-Hopkins-Ravenel, and we show that this gives

a new proof of the Segal conjecture for C2. This chapter follows closely the author’s results

in [17]. We finish in Chapter 6 with a detailed analysis of the above stacks approach in

the case when E = ER(n) is the n-th Johnson-Wilson theory. We also introduce chromatic

7



measure and compute its value on the fixed points of the ER(n)’s and on higher realK-theory

EOn spectra.
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Chapter 2

STACKS AND CHROMATIC HOMOTOPY

In this chapter, we introduce the basics of the chromatic approach to stable homotopy,

from the point of view of stacks. There is a wealth of good exposition on this material:

we refer the reader to [58] and [44], and we follow both of these closely. In Section 2.1,

we begin squarely in the context of algebraic geometry by introducing stacks and studying

various properties through the example ofMFG, the moduli stack of formal groups, the key

example in chromatic homotopy. In Section 2.2, we turn to topology and review the basics

of chromatic homotopy theory and its connection to the theory of stacks. With this in place,

in Section 2.3, we state the Ravenel conjectures and explain how the theory of stacks gives

a powerful viewpoint on these results.

2.1 Stacks

Stacks are a ubiquitous tool in algebraic geometry as they give an effective way to study

moduli problems. In particular, the theory of stacks admits much of the same flexibility

as the theory of schemes, while carrying significantly more data relevant to various moduli

problems. Stacks begin from the basic observation that to understand a moduli problem

properly, one must remember not only the isomorphism classes of a particular algebro-

geometric object, but also the nontrivial automorphisms carried by such an object (see [71]

for a discussion of this in the case of the moduli of curves). Indeed, this is necessary to have

suitable forms of descent available for moduli problems and, in particular, to have a category

in which suitable moduli spaces exist.

In Section 2.1.1 we review and motivate the definition of descent, stacks, and stackifi-

cation, and we give a number of examples. In Section 2.1.2, we turn to our main class of
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examples of stacks: locally presentable stacks. These are essentially the same data as a

Hopf algebroid, and we make this connection precise and connect quasicoherent sheaves over

a locally presentable stack to comodules over the corresponding Hopf algebroid, in Section

2.1.3. We turn to the example of interest in chromatic homotopy,MFG in Section 2.1.4, and

we show in Section 2.1.5 that, after localizing at a prime, (MFG)(p) admits a filtration by

height which strongly controls the geometry of the stack.

To motivate stacks more precisely, we begin with the following informal definition. In this

section, we fix a commutative ring k and let Aff ∶=CAlgopk be the category of affine schemes

over k. For a commutative k-algebra R, we let Spec(R) be the object in Aff corresponding

to R.

Definition 2.1.1. (Informal) A moduli problem is a functor F ∶ Affop → Sets. A solution

to the moduli problem F is a categorical framework in which

• The functor F is a representable.

• The values of F are determined by local data.

We make sense of this definition through several examples.

Example 2.1.2. The functor Gm ∶ Affop → Sets given by Spec(R) ↦ R× is represented

by Spec(k[t, t−1]); we did not need to alter the categorical framework to solve this moduli

problem. The locality condition is satisfied because Gm is a sheaf, which is to say that if

{Ui → Spec(R)} is any open cover, one has an equalizer sequence of sets

Gm(Spec(R))→∏
i

Gm(Ui) Ô⇒ ∏
i,j

Gm(Ui ×Spec(R) Uj)

Example 2.1.3. The functor Pn ∶Affop → Sets sending

Spec(R)↦ {“Lines through the origin” in Rn+1}

∶= {Rank one projective R-module quotients of Rn+1}
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is not represented by an affine scheme, but if we enlargeAffop to Sch, the category of schemes

over k, it is represented by the scheme given the same name: Pn, which is again a sheaf.

Example 2.1.4. The functor LB ∶Affop → Sets given by

Spec(R)↦ {Isomorphism classes of line bundles on Spec(R)}

cannot be represented by an object in the category of schemes over k. If it were, LB(−)

would be a sheaf as in the previous examples, and hence for any open cover {Ui → Spec(R)},

we would have an equalizer sequence of sets

LB(Spec(R)) ιÐ→∏
i

LB(Ui)→∏
i,j

LB(Ui ×Spec(R) Uj)

In particular, the map ι in the above sequence would be an injection. However, if L is a line

bundle on Spec(R), we may choose an open cover {Ui} such that L∣Ui is trivial for all i, and

hence the tuple

(L∣Ui) ∈∏
i

LB(Ui)

is equal to the tuple (trivi) where trivi is the trivial line bundle over Ui. But we have

ι(L) = (L∣Ui) = (trivi) = ι(triv)

where triv is the trivial line bundle over Spec(R). Since ι is an injection, this would imply

that every line bundle L is trivial.

However, we can recover a line bundle from the data of its local trivializations, hence if

we ask that our categorical framework remember the isomorphisms

L∣Ui ≅ Ui × Spec(R)

for a line bundle L and an open cover {Ui → Spec(R)}, we may resolve this issue.

We therefore instead enlarge Sets and replace LB with the functor

L̃B ∶Affop →Groupoids
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that sends Spec(R) to the groupoid of line bundles on Spec(R). Recording the groupoid

of line bundles - instead of just the isomorphism classes - allows one to remember the local

trivializations of a line bundle. As we will see, if we enlarge Affop to the category of stacks

on Affop, then there is an equivalence of groupoids

HomStacks(Spec(R),BGm) ≃ L̃B(Spec(R))

and in particular a bijection

π0(HomStacks(Spec(R),BGm)) ≅ LB(Spec(R))

where π0 denotes the set of isomorphism classes of a groupoid.

2.1.1 Prestacks, stacks, and stackification

There are several ways to approach the theory of stacks, and in this section we take the

approach that we feel is the most down-to-earth from the perspective of chromatic homotopy.

In particular, we use the functor-of-points approach. It is common to use, alternatively, the

theory of fibered categories (see [85]); this is a more geometric approach which may be

preferable to algebraic geometers and for which there is a more robust literature. However,

the approaches are equivalent via the Grothendieck construction: see Remark 2.1.20 below.

We also use strict functors to Groupoids as opposed to pseudofunctors. Algebraic

geometers will also find this somewhat nonstandard, and it is admittedly a less flexible

approach in general. For instance L̃B(−) from Example 2.1.4 is not a strict functor, though

we discuss a strictification of it below. However, this is sufficient and convenient for our

approach, and the two approaches produce equivalent theories, as stacks may always be

strictified (see again Remark 2.1.20 below).

As advertised, stacks are meant to provide solutions to certain moduli problems while

behaving formally similarly to schemes. According to Definition 2.1.1, we must first make

process the notion of locality, which leads us to the following definition.
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Definition 2.1.5. Let C be a category with finite limits. A Grothendieck topology on C is

a collection J of sets of morphisms {Ui → U} in C called “coverings” satisfying the following

properties:

1. For any isomorphism f ∶ U → V in C, the set {f ∶ U → V } is a covering.

2. Transitivity: if {Ui → U} is a covering, and for each i, {Vij → Ui} is a covering, then

the set of composites {Vij → U} is a covering.

3. Closure under pullbacks: if {Ui → U} is a covering, and V → U is any morphism, then

{V ×U Ui → V } is a covering.

We will refer to a pair (C, J) as a Grothendieck site, or just a site.

Example 2.1.6. The Zariski topology on C = Aff is a Grothendieck topology, where a set

of morphisms

{Spec(Ai)→ Spec(A)}

is a covering if each Spec(Ai)→ Spec(A) is a Zariski open immersion, and the map

∐
i

Spec(Ai)→ Spec(A)

is surjective.

Remark 2.1.7. In the above definition, we use sets of morphisms {Ui → U} as this matches our

intuition about open covers from topology. In practice, however, it is often more convenient

to speak of a single morphism V → U as a cover, where one replaces {Ui → U} with the map

V =∐Ui → U

This requires C to have (arbitrary) coproducts, but this will always be the case in our

applications, as Aff has arbitrary coproducts. Working in this way, one may equivalently

define a topology J on C to be a subcategory J ⊂ C that is wide, replete, and stable under
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pullbacks. In Example 2.1.6, this has the effect of replacing the set of morphisms {Spec(Ai)→

Spec(A)} with the single morphism

Spec(∏Ai) ≅∐Spec(Ai)→ Spec(A)

We make use of both approaches.

Example 2.1.8. We will primarily work with the faithfully flat topology (or just the flat

topology, for short) on C =Aff. Here a cover is a map Spec(B)→ Spec(A) that is dual to a

faithfully flat map of k-algebras A→ B. Equivalently, A→ B is flat and Spec(B)→ Spec(A)

is surjective.

If C is equipped with a Grothendieck topology (C, J), one has a notion of locality in C,

and this determines a corresponding notion of descent in C. Informally, we say a functor

F on C satisfies descent with respect to J if the value of F on U ∈ C may be recovered -

uniquely in some sense - from the values F(Ui) for a cover {Ui → U}. Making this descent

condition precise depends on what sort of functor F is. The most straightforward example

is that of a sheaf (of sets).

Definition 2.1.9. Let F ∶ Cop → Sets be a presheaf on C. We say F is a sheaf on (C, J), if

for every cover p ∶ V → U , the following diagram is an equalizer in Sets:

F(U) F(V ) F(V ×U V )p∗ π∗1

π∗2

where πi ∶ V ×U V → V for i = 1,2 are the canonical projections.

For the reader familiar with sheaves in the classical setting of affine schemes - sheaves on

(Aff,Zariski) - perhaps the first question that comes to mind is how sheafification works in

this more general context. We will need the following definition.

Definition 2.1.10. For U ∈ C, let Cover(U) be the category of covers {p ∶ V → U} ∈ J ,
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where a morphism {p ∶ V → U}→ {p′ ∶ V ′ → U} is a commutative diagram

V U

V ′

p

p′

Definition 2.1.11. (Grothendieck’s plus construction) Let (C, J) be a site and F a presheaf

on C. For {p ∶ V → U} ∈ J , define

H0(p,F) ∶= {s ∈ F(V ) : π∗1(s) = π∗2(s) ∈ F(V ×U V )}

Let F+ be the presheaf on C defined by

F+(U) = colimp∈Cover(U)opH
0(p,F)

Remark 2.1.12. F+ is not quite a sheaf on (C, J). It is, however, a separated presheaf: for

a covering {p ∶ V → U} ∈ J , the map p∗ ∶ F+(U) → F+(V ) is an injection. Moreover, if F is

already separated, then F+ is a sheaf (see [85, tag 00W1] for more details). Therefore F++

is the sheafification of F , and the functor (−)++ exhibits the category of sheaves on (C, J) as

a reflective subcategory of Fun(Cop,Sets), the category of presheaves on C.

A stack is, suitably defined, a sheaf of groupoids instead of sets, and one may keep

Example 2.1.4 in mind to parse and motivate the following definitions. We begin first with

the analogous notion of presheaf in this setting.

Definition 2.1.13. A prestack on C is a (strict) functor Cop →Groupoids. HereGroupoids

is the category of Groupoids and (strict) natural transformations.

Remark 2.1.14. According to the above definition, a prestack is merely a presheaf of groupoids.

We can be more specific about what we mean by the category of prestacks on C, however, as

the obvious such category has a natural refinement to a strict 2-category. For F,G prestacks

on C, there is a groupoid HomPrestacks(F,G) as follows.

• The objects of HomPrestacks(F,G) are (strict) natural transformations of functors T ∶

F Ô⇒ G, hence a natural family of functors Tx ∶ F (x)→ G(x) for x ∈ C.
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• A morphism in HomPrestacks(F,G) (i.e. a 2-morphism in Prestacks) from T to S for

T,S ∶ F → G consists of a natural transformation αx ∶ Tx → Sx for every x ∈ C, satisfying

the following naturality property: suppose f ∶ x → y is a morphism in C, then we ask

for the following natural transformations of functors F (x)→ G(y) to be equal

F (x) G(x) G(y)
Sx

Tx

αx
G(f)

F (x) F (y) G(y)F (f)

Sy

Ty

αy

To define a stack, we want an appropriate notion of descent in Prestacks relative to a

given topology J on C. A naive guess would be to ask, for a prestack F on C and each cover

{p ∶ V → U} ∈ J , for the sequence

F(U)→ F(V ) Ô⇒ F(V ×U V )

to be an equalizer in Groupoids. Since we have chosen to work entirely in the strict setting,

this turns out to be a necessary condition for F to be a stack, although it is not sufficient

and is in any case far too rigid a notion of descent. Indeed, consider again Example 2.1.4:

when F = L̃B. Our notion of descent should capture the fact that a line bundle may be

recovered, up to isomorphism, by cocycle data. The above condition would tell us that a

line bundle may be recovered only by trivial cocycle data, in which the isomorphisms on the

intersection V ×U V are identity maps.

This points to two features the above descent condition fails to capture. First, for a

line bundle L on V , we should not ask for the restrictions π∗1L and π∗2L to be equal on the

intersection V ×U V ; rather we should ask for an isomorphism

α ∶ π∗1L
≅Ð→ π∗2L
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on the intersection V ×U V . Second, the isomorphism α needs to satisfy the cocycle condition

on the triple intersection V ×U V ×U V . The latter condition tells us we should be asking for

a universal property on the larger diagram

F(U) F(V ) F(V ×U V ) F(V ×U V ×U V )

and the former condition tells us that we should not ask for this to be a limit diagram, in

the strict 1-categorical sense. Our notion of descent needs to be defined with reference to

the weaker notion of equivalence in Groupoids - that of an equivalence of categories - as

opposed to the profane notion of an isomorphism of categories. This, of course, amounts

to asking for the above diagram to be a sort of homotopy limit diagram. Conveniently,

however, in Groupoids, one may define such notions directly without being precise about

a homotopy theory of groupoids.

Definition 2.1.15. Let (C, J) be a site, {p ∶ V → U} ∈ J a cover, and

F ∶ Cop →Groupoids

a prestack on C. We define the descent groupoid Descp(F) as follows:

• An object of Descp(F) is an object E ∈ F(V ) together with an isomorphism

α ∶ π∗1E → π∗2E

in F(V ×U V ) satisfying the cocycle condition: α23 ○ α12 = α13 as morphisms in the

groupoid

F(V ×U V ×U V )

Here we let πij ∶ V ×U V ×U V → V ×U V be the projection onto the i and j-th factor

for i < j, and αij ∶= π∗ij(α).
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• A morphism φ ∶ (E,α)→ (E′, α′) consists of a morphism φ ∶ E → E′ in F(V ) such that

the diagram

π∗1E π∗1E
′

π∗2E π∗2E
′

π∗1(φ)

α α′

π∗2(φ)

commutes.

For F a prestack on C, functoriality of F defines restriction maps that assemble into a

functor F(U)→ Descp(F) for a covering {p ∶ V → U} ∈ J .

Definition 2.1.16. We say F is a stack if, for each covering in {p ∶ V → U} ∈ J , the functor

F(U)→ Descp(F)

is an equivalence of groupoids.

Proposition 2.1.17. The strict 2-category of stacks is a full sub-2-category of Prestacks,

and there exists a “stackification” functor

(−)a ∶ Prestacks→ Stacks

satisfying the following universal property: we have an equivalence of groupoids

HomStacks(Fa,G) ≃ HomPrestacks(F ,G)

for G a stack, and these equivalences are natural in G.

Proof. We summarize the construction given in [85, tag 02ZN]. Let

F ∶ Cop →Groupoids

be a prestack. One begins by sheafifying this functor, which may be done by sheafifying

the object and morphism presheaves (of sets). One then applies a stacky variant of the plus

construction by setting, for U ∈ C

(F)a(U) = hocolimp∈Cover(U)opDescp(F)
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This requires, of course, an appropriate notion of homotopy colimit in Groupoids, but once

again it is straightforward to be explicit in this case. This has the additional advantage of

giving, for F a strict prestack, an explicit model of (F)a that is also strict. One sets

ob(F)a(U) = {({p ∶ V → U}, (E,α)) ∣ p ∈ J and (E,α) ∈ Descp(F)}

That is, an object of (F)a(U) is a choice of cover of U and cocycle datum for F with respect

to this cover. For the set of morphisms

({p ∶ V → U}, (E,α))→ ({p′ ∶ V ′ → U}, (F,β))

we say a cover {q ∶W → U} ∈ J is a common refinement of p and p′ if there is a diagram in

Cover(U)
W V ′

V U

f

g p′

p

such that p ○ g = p′ ○ f = q. The set of such common refinements determines an obvious

(co-filtered) category we call U , and we define

Hom(F)a(U)((p, (E,α)), (p′, (F,β)))

to be the set

colimq∈Uop HomDescq(F)(f∗(E,α), g∗(F,β))

Definition 2.1.18. A morphism of (pre)-stacks f ∶M→ N is said to be an equivalence if it

is pointwise. That is, for all c ∈ C, f(c) ∶M(c)→ N (c) is an equivalence of groupoids.

Definition 2.1.19. We say a groupoid is discrete if it has no non-identity automorphisms.

We say a prestack M is discrete if the groupoid M(Spec(R)) is discrete for all nonzero

k-algebras R. Note that if a stackM is discrete as a prestack, the groupoidM(Spec(∗)) is

necessarily discrete, where ∗ denotes the zero ring.
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Remark 2.1.20. We are due now for a remark on our choice to work in the strict setting. Most

of the stacks appearing in chromatic homotopy come to us as stacks associated to a groupoid

object in Schemes, and all such stacks are strict. Moreover, most of the constructions we

perform - e.g. homotopy pullbacks, homotopy inverse limits, and quotient stacks - admit

straightforward explicit models, so this doesn’t really limit our flexibility. Every prestack

is canonically naturally equivalent to one that is a strict functor - i.e. it can always be

strictified in a functorial way - see [85, tag 004A].

Remark 2.1.21. For the reader who prefers not to work in the strict setting and prefers a ho-

motopy theoretic approach to stackification, see Hollander [43]. Hollander equips Prestacks

with the structure of a model category in which Stacks is precisely the subcategory of fibrant

objects, and stackification corresponds to fibrant replacement.

We finish the subsection with some basic examples of stacks. Unless otherwise stated,

we’ll be working over the site (Aff,Flat).

Example 2.1.22. Representable stacks : Every affine scheme Spec(S) determines a stack

(which we still denote by Spec(S)) via the representable functor HomAff(−,Spec(S)), where

regard the set HomAff(Spec(R),Spec(S)) as a groupoid with only identity morphisms. For

any stack Y , by Yoneda, we have an equivalence of groupoids:

HomStacks(Spec(S), Y ) ≃ Y (Spec(S))

Example 2.1.23. BG: Let G be a finite group. Let BGpre denote the prestack that is a

constant functor at the groupoid consisting of a single object with automorphism group G.

We let BG denote the stackification of BGpre. Following our construction of stackification

above, forX an affine scheme, an object in BG(X) is a choice of faithfully flat cover {U →X}

and a locally constant function α ∶ U ×X U → G, so that α satisfies the cocycle condition on

U ×X U ×X U . This is a G-cocycle datum on X, which is equivalent to a principal G-bundle

/ G-torsor on X.
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A map between two such cocycles consists of a common refinement, and a map of cocycles

on the refinement. Such a map is the same data as a map ofG-torsors onX. We find therefore

that BG(X) is equivalent to the groupoid of G-torsors on X, hence BG is the moduli stack

of G-torsors. One can of course do this and the next example with more generally a group

scheme - for instance with Gm, giving a strict model of L̃B from Example 2.1.4.

Example 2.1.24. Quotient stacks : Let G be a finite group acting on a scheme X ∈ Aff.

We will define a quotient stack X/G. Usually when we take quotients by group actions, on

say a space, we glue together points that are in the same orbit. Here we are working with

groupoids, so we don’t want to glue objects together, we want to build in an isomorphism

between them instead. This leads us to the following.

Suppose S is a G-set, let BG(S) denote the action groupoid of S, which has objects S

and

HomBG(S)(s1, s2) = {g ∈ G : g ⋅ s1 = s2}

Since G acts on the scheme X, the set HomAff(Spec(R),X) inherits a G-action, for any

Spec(R) ∈Aff. We therefore define the prestack (X/G)pre by

(X/G)pre(Spec(R)) = BG(HomAff(Spec(R),X))

and then (X/G) is the stackification of (X/G)pre. It’s not hard to see for example that

BG ≃ Spec(k)/G

where Spec(k) is given the trivial G-action. For this reason, BG is sometimes referred to as

∗/G since Spec(k) is the terminal object in Aff.

2.1.2 Locally presentable stacks

In this section, we discuss some basic properties of stacks and use these to define the

notion of a locally presentable stack. We show that any such stack admitting an affine cover
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is equivalent to a stack associated to a Hopf algebroid. We continue to work over the site

(Aff,Flat) over a fixed commutative ring k, where Aff ∶=CAlgk.

We begin with the homotopy pullback of stacks. Whenever we say a square diagram of

groupoids commutes, we mean that it commutes up to a (possibly unspecified) 2-isomorphism.

This means that in a diagram of groupoids of the form

A B

C D

f

h g

k

there is a natural transformation of functors T ∶ g ○ f Ô⇒ k ○ h from A → D. In practice,

this 2-isomorphism T is often understood from context, such as when the above square is a

homotopy pullback square of groupoids, which we now define.

Definition 2.1.25. Suppose given a diagram

B

C D

F

G

of groupoids, then the homotopy pullback B ×D C is the groupoid given as follows

• ob(B ×D C) consists of triples (b, c, φ), where b ∈ B, c ∈ C, and φ is an isomorphism

F (b) φÐ→ G(c).

• A morphism of triples (b, c, φ) → (b′, c′, φ′) consists of a morphism f ∶ b → b′ in B and

a morphism g ∶ c→ c′ in C such that the following diagram commutes

F (b) F (b′)

G(c) G(c′)

F (f)

φ φ′

G(g)

Note that in the pullback square

B ×D C C

B D
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there is a canonical 2-isomorphism making the diagram commute: it is given on an object

(b, c, φ) by the isomorphism φ.

Remark 2.1.26. When we say a commutative square of groupoids

P B′

C ′ D′

is a pullback square, we mean that there is a morphism of commutative squares

B ×D C B

P B′

C D

C ′ D′

in which each square commutes up to a (possibly unspecified) 2-isomorphism, and each arrow

from the front square to the back square is an equivalence of groupoids.

Definition 2.1.27. The homotopy pullback of stacks is then done pointwise on a diagram

of stacks as above. That is, given a diagram

N

N ′ M
of (pre)-stacks, we define the homotopy pullback N ′ ×MN to be the prestack given by

(N ′ ×MN )(Spec(R)) = N ′(Spec(R)) ×M(Spec(R))N (Spec(R))

with the obvious functoriality.

Remark 2.1.28. We will rarely speak of a sort of pullback of stacks other than this one, so

we will often drop the prefixes “stacky” or “homotopy”. We will make use of the fact that

pullback of prestacks commutes with stackification (see [85, tag 04Y1]). In particular, if N ,

N ′, andM are stacks, then N ′ ×MN is a stack.
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Remark 2.1.29. It is an instructive exercise to check that this definition of homotopy pullback

is indeed homotopy invariant. That is, if one replaces B, C, orD with an equivalent groupoid,

the corresponding homotopy pullback remains equivalent to B ×D C.

It is often useful to know that, in the category Top of topological spaces, a Serre fibration

E → B has the property that any strict pullback square

A ×B E E

A B

is also a homotopy pullback square. A similar fact is true in Groupoids and therefore in

Stacks. We say a morphism of groupoids F ∶ B → D is a fibration if, for all b ∈ B, and for

all morphisms f ∶ F (b)→ d in D, there exists a morphism f̃ ∶ b→ b′ in B such that F (f̃) = f .

We leave it to the reader to check directly that, for any functor G ∶ C → D, the canonical

functor

B ×strict
D C → B ×D C

(b, c)↦ (b, c, id)

from the strict pullback in Groupoids to the homotopy pullback in Groupoids (with the

effect on morphisms defined in the obvious way) is an equivalence of groupoids. We define

a morphism of stacks to be a fibration if it is a fibration pointwise, so that strict pullbacks

along fibrations in Stacks also coincide with the corresponding homotopy pullbacks, up to

equivalence.

Definition 2.1.30. A morphism of stacks f ∶M → N is said to be affine if for any map

Spec(R)→ N , the pullback P in the following diagram

P M

Spec(R) N
f

is equivalent to an affine scheme.
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Definition 2.1.31. For an affine morphism of stacks f ∶M → N , we say f has algebraic

geometry property P (e.g. flat, etale, surjective, open substack, G-torsor, etc.) if, for every

pullback diagram
Spec(S) M

Spec(R) N
f ′ f

f ′ has property P as a map between affine schemes. When we refer to a morphism f having

property P , we always mean that f is affine and has property P as above.

Example 2.1.32. Fix a finite group G, and consider the morphism f ∶ Spec(k) → BG

classifying the trivial G-torsor over Spec(k), i.e. this classifies the unique morphism of

k-schemes

Spec(∏
g∈G

k)→ Spec(k)

The morphism of stacks f is affine, and it is a G-torsor (the universal one). Given a pullback

diagram
P Spec(k)

Spec(R) BG

f ′ f

φ

f ′ is the G-torsor that φ classifies. Notice P is a discrete stack in the sense of Definition

2.1.19 because Spec(R) and Spec(k) are, so we just need to show that the presheaf

Affop PÐ→Groupoids
objectsÐÐÐ→ Sets

is represented by the G-torsor φ ∈ HomStacks(Spec(R),BG) = BG(Spec(R)). Tracing thru

the definition of the pullback, a point in P(Spec(S)) consists of a map

g ∶ Spec(S)→ Spec(R)

along with a trivialization of the G-torsor classified by φ ○ g. A trivialization of a G-torsor

is the same thing as a section of a G-torsor, so this data is the same as a that of a map

Spec(S) → T , where T is the total space of the G-torsor classified by φ. Therefore P ≃

HomAff(−, T ).
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Example 2.1.33. LetM be any stack. DefineM(p) =M×Spec(k(p)) - this is a product of

functors, i.e. pointwise product. There is a map ι ∶M(p) →M given by

M × Spec(k(p))→M × Spec(k) ≅M

This morphism is affine and exhibits M(p) as an open substack of M. To see ι is affine

suppose we have a pullback diagram of stacks

P M(p)

Spec(R) M

ι

f

We want to know that P is equivalent to an affine scheme, and it’s straightforward to show

that it’s equivalent to Spec(R) × Spec(k(p)) ≅ Spec(R(p)). Spec(R(p)) is an open subscheme

of Spec(R), so ι is an open immersion.

We move now to locally presentable stacks, which will comprise most of our examples.

Definition 2.1.34. A stackM is said to be locally presentable if the diagonal morphism

M ∆Ð→M ×M

is affine.

Lemma 2.1.35. 1. If M is a locally presentable stack, any morphism Spec(R) →M is

affine.

2. IfM is locally presentable, and N ⊂M is any substack, then N is locally presentable.

Proof. Given a pullback diagram

P Spec(R)

Spec(S) M
f

g
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one has a pullback diagram

P M

Spec(R) × Spec(S) M ×M
∆

f×g

P is therefore affine, and this proves (1).

For (2), one checks that the square

N M

N ×N M ×M
∆ ∆

is a pullback; now observe that the pullback of an affine morphism is an affine morphism.

A large class of examples of locally presentable stacks come from so-called Hopf Alge-

broids. This is, in the first place, how stacks enter into chromatic homotopy, hence we place

additional emphasis here.

Definition 2.1.36. A groupoid object in a category C is a pair (X0,X1) of objects in C

along with morphisms

X0 X1
id

codomain

domain

and

X1 ×X0 X1
compositionÐÐÐÐÐÐ→X1

So that the functor

(HomC(−,X0),HomC(−,X1)) ∶ C → Sets × Sets

lifts to Groupoids along the functor

Groupoids
(objects,morphisms)ÐÐÐÐÐÐÐÐÐÐ→ Sets × Sets

via the given structure maps.
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Along the equivalence CAlgk ≃ Affop, a groupoid object (Spec(A),Spec(Γ)) in Aff

corresponds to what one may call a co-groupoid object in CAlgk.

Definition 2.1.37. A Hopf Algebroid over k is a pair of commutative k-algebras (A,Γ)

along with morphisms in CAlgk

A Γ

ηR

ηL

ε

and

Γ
∆Ð→ Γ⊗A Γ

such that ηL is flat, and such that this data determines a groupoid object structure on

(Spec(A),Spec(Γ)) in Aff.

Remark 2.1.38. Since the functor

(HomC(−,X0),HomC(−,X1)) ∶ C → Sets × Sets

lifts not just to Categories but Groupoids, by the Yoneda lemma, one has the additional

structure map c ∶ X1
inverseÐÐÐ→ X1. The structure maps satisfy various coherence conditions

corresponding to the defining properties of a groupoid, and these, in turn, determine coher-

ences for the maps of k-algebras appearing in a Hopf algebroid (A,Γ). For instance, one has

c2 = id and ηR = c ○ ηL, so that flatness of ηL is equivalent to flatness of ηR. This flatness

condition is not necessary for (Spec(A),Spec(Γ)) to have the structure of a groupoid object;

it is included so that the category of comodules over (A,Γ) has the structure of an Abelian

category, in particular so that it has kernels. For the reader interested in learning more

about Hopf algebroids, the definitive source is Appendix A1 of [77].

Definition 2.1.39. Let (A,Γ) be a Hopf algebroid, then one has a prestack

Groupoids

Affop Sets × Sets
(objects,morphisms)

M
pre
(A,Γ)

(HomAff(−,Spec(A)) , HomAff(−,Spec(Γ)))

We letM(A,Γ) denote the stackification ofMpre
(A,Γ)

.
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Example 2.1.40. Let (A,A) be the Hopf algebroid in which all structure maps are given

by the identity map of A. The associated stack M(A,A) is equivalent to the affine scheme

Spec(A), where the latter is regarded as a stack taking values in discrete groupoids.

Example 2.1.41. Quotient Stacks, revisited : Let G be a finite group and R be a k-algebra

with G-action. There is an equivalence of stacks

Spec(R)/G ≃M(R, ∏
g∈G

R)

where the former is as in Example 2.1.24, and the latter is given by the following Hopf

algebroid structure:

• ηL ∶ R → ∏
g∈G

R is given by the diagonal, and the g-th component of

ηR ∶ R →∏
g∈G

R

is given by the automorphism g ∶ R → R.

• The inversion map c is given by

∏
g∈G

R →∏
g∈G

R

(rg)g∈G ↦ (g ⋅ rg−1)g∈G

• ε ∶ ∏
g∈G

R → R is projection onto the factor indexed by the identity element of G.

• The coproduct map

∏
g∈G

R → (∏
g∈G

R)⊗R (∏
g∈G

R)

sends the basis element

eg = (0, . . . ,1, . . . ,0) ∈∏
g∈G

R

with its nonzero entry in the g-th component to the sum

∆(eg) = ∑
g1,g2∈G
g1⋅g2=g

eg1 ⊗ eg2
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Proof. Referring to Example 2.1.24, the sheafification of the morphisms presheaf of the action

groupoid

BG(HomAff(Spec(R),−))

is Spec(∏
g∈G

R). One then uses the isomorphism of R-algebras

∏
g∈G

R ≅Map(G,R)

to produce the above formulae.

Remark 2.1.42. We pause to clarify how a Hopf algebroid (A,Γ) determines a functor valued

in Groupoids. Let R be a commutative k-algebra, then HomCAlgk(A,R) forms the set of

objects of a groupoid and HomCAlgk(Γ,R) forms the set of all morphisms (in particular, not

just the set of morphisms between a particular pair of objects). For f ∈ HomCAlgk(Γ,R),

one has a commutative diagram

A

Γ R

A

c

ηL
f

d

ηR

which represents the fact that f is a morphism from c to d. For composition, one has

HomCAlgk(Γ,R) ×HomCAlgk(A,R) HomCAlgk(Γ,R) HomCAlgk(Γ⊗A Γ,R)

HomCAlgk(Γ,R)

≅

∆∗

where, for the first isomorphism, one uses the fact that the pushout in the category CAlgk

is the tensor product of commutative k-algebras.

For the rest of the chapter, we fix our site to be (Aff,Flat). We show now that, in the

flat topology, a stack of the form M(A,Γ) is the same thing as a locally presentable stack

admitting a faithfully flat cover by an affine scheme. We begin with the following definition.
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Definition 2.1.43. For a Hopf algebroid (A,Γ), let

pA ∶ Spec(A)→M(A,Γ)

denote the canonical map induced by the map of Hopf algebroids

(A,Γ)→ (A,A)

given by id ∶ A→ A and ε ∶ Γ→ A, where the Hopf algebroid (A,A) is as in Example 2.1.40.

Theorem 2.1.44. In the flat topology - i.e. in the category of stacks on (Aff ,Flat) - one

has the following

1. For a Hopf algebroid (A,Γ), the stackM(A,Γ) is locally presentable, and the canonical

map pA ∶ Spec(A)→M(A,Γ) is a faithfully flat cover.

2. If M is a locally presentable stack, for any faithfully flat map p ∶ Spec(A) → M, a

pullback diagram
Spec(Γ) Spec(A)

Spec(A) M

determines the structure of a Hopf algebroid on the pair (A,Γ) and induces an equiv-

alence of stacks

M(A,Γ)

≃Ð→M

Proof. (cf. [44, Proposition 10.1 and Claim 10.4]) For (1), fix morphisms

f, g ∶ Spec(R)→M(A,Γ)

and note that the following is a pullback square

Spec(R) ×M(A,Γ) Spec(R) M(A,Γ)

Spec(R) M(A,Γ) ×M(A,Γ)

∆

(f ,g)
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It therefore suffices to show the pullback P in

P Spec(R)

Spec(R) M(A,Γ)

g

f

is equivalent to an affine scheme. We break this argument into the following smaller pieces:

• Case I : Let f = g = pA be the canonical map Spec(A)→M(A,Γ). We claim the following

is a pullback square
Spec(Γ) Spec(A)

Spec(A) M(A,Γ)

ηR

ηL pA

pA

It is straightforward to show - using Remark 2.1.42 - that

Spec(Γ) Spec(A)

Spec(A) Mpre
(A,Γ)

ηR

ηL pA

pA

The result now follows from the fact that pullback commutes with stackification (see

Remark 2.1.28), and that affine schemes are stacks.

• Case II : Let f ∶ Spec(R) →M(A,Γ) be a map factoring through the canonical map pA

and g = pA. One has pullback squares

P Spec(Γ) Spec(A)

Spec(R) Spec(A) M(A,Γ)

g

f

g

Therefore, P ≃ Spec(R ⊗A Γ) and is, in particular, affine. We may argue similarly for

the case in which f, g ∶ Spec(R)→M(A,Γ) both factor through the canonical map pA.

• Case III : Let f ∶ Spec(R)→M(A,Γ) be any map and g ∶ Spec(R)→M(A,Γ) a map that

factors thru pA. SinceM(A,Γ) is a stack, there is a faithfully flat map

p ∶ Spec(S)→ Spec(R)
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such that f ○ p factors through pA. By Case II, therefore, one has pullback squares

P̃ P Spec(R)

Spec(S) Spec(R) M(A,Γ)

g

p f

where P̃ is affine. This case then follows from Lemma 2.1.45 below.

• Case IV : Let f, g ∶ Spec(R)→M(A,G) be any maps, and choose a cover p ∶ Spec(S)→

Spec(R) such that f ○ p factors through pA. We have pullback squares

P̃ P Spec(R)

Spec(S) Spec(R) M(A,Γ)

g

p f

where P̃ is affine by Case III. Again P is affine by Lemma 2.1.45.

For (2), we must first show that the pullback diagram

Spec(Γ) Spec(A)

Spec(A) M

ηL

ηR

determines a Hopf algebroid structure on the pair (A,Γ). But by definition of pullback, the

pair

(HomAff(Spec(R),Spec(A)),HomAff(Spec(R),Spec(Γ)))

is naturally identified with the groupoid P(Spec(R)) whose objects are maps f ∶ A→ R and

whose morphisms f0 → f1 are isomorphisms inM(Spec(R))

f∗0 (pA)→ f∗1 (pA)

where p ∶ Spec(A) →M is the given cover. The existence and necessary properties of the

Hopf algebroid structure maps then follow from the Yoneda lemma.

We have, moreover, a canonical morphism of stacksMpre
(A,Γ)

→M given pointwise by the

obvious inclusion P(Spec(R))→M(Spec(R)). This is fully faithful and hence it remains so
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after applying stackification. It becomes essentially surjective after applying stackification:

by passing to a faithfully flat cover, we can assume every object in M(Spec(R)) is of the

form f∗(p).

Lemma 2.1.45. Suppose one has a pullback square of stacks

P̃ P

Spec(S) Spec(R)p

such that P̃ is affine and p is faithfully flat. Then P is affine.

Proof. Fix an equivalence Spec(A) ≃ P̃ , then A is an S-module equipped with a descent

datum with respect to the cover p. That is, there is an isomorphism of S ⊗R S-modules

A⊗R S → S ⊗RA that satisfies the cocycle condition. This comes via universal property: let

f and g be the maps in the following pullback square

Spec(A⊗R S) P

Spec(S ⊗R S) Spec(R)

f

g

p○π2

Consider then the diagram

Spec(A⊗R S)

Spec(S ⊗R A) Spec(A) P

Spec(S ⊗R S) Spec(S) Spec(R)

f

g

π1 p

The larger rectangle is a pullback, and the dashed map is the desired isomorphism.

The dashed map is, in fact, an isomorphism of S ⊗R S-algebras, hence we have a qua-

sicoherent sheaf of algebras over Spec(S) equipped with a descent datum for the cover

Spec(S) → Spec(R). By faithfully flat descent for algebras, this sheaf must be pulled back
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from a quasicoherent sheaf of algebras on Spec(R), and the result follows (see [70, Theorem

2.23]).

2.1.3 Quasicoherent sheaves on stacks

In this subsection, we define (quasicoherent) sheaves on stacks and comodules over a Hopf

algebroid. We show that whenM is locally presentable and admits an affine cover that the

category of quasicoherent sheaves over M is equivalent to the category of comodules over

the corresponding Hopf algebroid. We continue to work in the flat site on affine schemes

over k.

Definition 2.1.46. SupposeM is a stack on (Aff,Flat), we define the category Aff/M as

follows:

• An object of Aff/M is a map Spec(A) → M, i.e. a k-algebra A and a choice of

xA ∈M(Spec(A))

• A morphism (f, φ) ∶ xA → xB is a morphism f ∶ Spec(A) → Spec(B) of k-algebras and

a choice of isomorphism φ ∶ xA → f∗xB in M(Spec(A)), with composition defined in

the obvious way.

Given a topology J on Aff, we define the (big) J-site onM to be the category Aff/M,

where a morphism (f, φ) is a covering if f ∈ J . We denote this Grothendieck site by AffJ/M.

Remark 2.1.47. We have given the above definition forM a stack on (Aff,Flat) since that

is our chosen setting, but there is no need for this. Note, in particular, that the stack M

may be defined with respect to a different topology (that is, it satisfies descent with respect

to a different topology) than the topology J used to define the site AffJ/M.

Using the general formalism of Grothendieck sites, we can easily make sense of sheaf

cohomology in this setting.
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Definition 2.1.48. A presheaf F on a stackM is a presheaf of sets on the category Aff/M.

A J-sheaf onM is a sheaf on the site AffJ/M. An abelian (pre)-sheaf onM is a (pre)-sheaf

onM valued in Ab. A (pre)-sheaf of rings onM is a (pre)-sheaf onM valued in CAlg.

Example 2.1.49. For a stackM, we let the structure sheaf OM be defined by

OM(Spec(A)→M) = A

with the obvious functoriality. OM is an abelian sheaf onM.

Definition 2.1.50. Let F be a presheaf onM, we define the global sections of F to be the

set

Γ(M;F) ∶= HomFun((Aff/M)op,Sets)(∗,F)

where here ∗ is the terminal object in Fun((Aff/M)op,Sets). If F is an abelian presheaf,

then Γ(M;F) is naturally an abelian group, and we define the cohomology groups H i(M;F)

to be the right derived functors of Γ(M;−). See [85, tag 01FT] for more details.

We will be especially interested in the cohomology of quasicoherent sheaves for their

relation to comodules in the locally presentable case. We define these now and remark on

equivalent definitions one may find in the literature.

Definition 2.1.51. An OM-module is an abelian sheaf F on M such that for each xA ∶

Spec(A)→M, F(xA) has the structure of an A-module, and for a morphism (f, φ) ∶ xA → xB

in Aff/M, the map

F(xB)→ f∗F(xA)

is a map of B-modules, where f∗F(xA) is the B-module given by restriction of scalars along

f . An OM-algebra is then defined in the obvious way.

We say an OM-module F is quasicoherent if, for all xA ∈ Aff/M, the restricted sheaf

(xA)∗F is a quasicoherent OSpec(A)-module.
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Remark 2.1.52. Since quasicoherent sheaves on affine schemes Spec(R) are the same as

modules over the ring of functions R, each restricted sheaf (xA)∗F is simply a choice of A-

module MxA . The functoriality with respect to Aff/M guarantees that for every morphism

(f, φ) ∶ xA → xB in Aff/M, the corresponding map

F(xB)→ f∗F(xA)

of B-modules induces to an isomorphism of A-modules.

F(xA)⊗A B → F(xA)

One can therefore use these conditions to define a quasicoherent sheaf onM in this way from

a functor-of-points perspective, and this is the approach taken by Lurie in [58] and Goerss

in [27].

Alternatively, one may define quasicoherent sheaves on M in the usual geometric way,

by asking that there be some cover

p ∶ U →M

with the property that, for some sets I and J , there is an exact sequence

p∗O⊕I
M ∣U → p∗O⊕J

M ∣U → p∗F ∣U → 0

At least in the case when U ≃ Spec(A) is affine and M is locally presentable (so that p is

automatically an affine morphism), we have for any map f ∶ Spec(R)→M a pullback square

Spec(R̃) Spec(A)

Spec(R) M

p

f

Since taking pullbacks of quasicoherent sheaves is right exact, the sequence remains exact

when pulled back to Spec(R̃), and the morphism Spec(R̃) → Spec(R) is a faithfully flat

cover, so f∗F is a quasicoherent sheaf on Spec(R), and we recover Definition 2.1.51.
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We finish this subsection by relating quasicoherent OM-modules and algebras for M

equivalent to a Hopf algebroid stack to comodules and comodule algebras over the Hopf

algebroid.

Definition 2.1.53. Let (A,Γ) be a Hopf algebroid. A (left) comodule over (A,Γ) is an

A-module M equipped with an A-linear coaction map

ψ ∶M → Γ⊗AM

that is counitary and coassociative. A comodule algebra R over (A,Γ) is a commutative

A-algebra that is also an (A,Γ)-comodule such that the coaction map is a map of A-algebras

(see [77, A1.1.2] for more details).

Theorem 2.1.54. There is an equivalence of abelian categories

QCoh(M(A,Γ)) ≃ Comod(A,Γ)

between the category of quasicoherent OM(A,Γ)-modules and the category of comodules over

(A,Γ).

Proof. We begin by constructing a functor

QCoh(M(A,Γ))→Comod(A,Γ)

Letting pA ∶ Spec(A) →M(A,Γ) be the canonical cover, F ∈ QCoh(M(A,Γ)) determines an

A-module

M ∶= (pA)∗F

By functoriality with respect to the pullback diagram

Spec(Γ) Spec(A)

Spec(A) M(A,Γ)

ηL

ηR
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we have an isomorphism of Γ-modules

φ ∶M ⊗A Γ→ Γ⊗AM

M then becomes a left (A,Γ)-comodule via

M →M ⊗A Γ
φÐ→ Γ⊗AM

m↦m⊗ 1↦ φ(m⊗ 1)

Going the other way, if (M,ψ) ∈ Comod(A,Γ), we define (FM)(pA) = M and for any map

f ∶ Spec(R)→M(A,Γ) that factors through pA, we define (FM)(f) by pulling back M along

the map Spec(R) → Spec(A). Suppose now that f ∶ Spec(R) → M(A,Γ) is any map, and

consider the following diagram:
Spec(Γ) Spec(A)

Spec(B ⊗R B) Spec(B)

Spec(A) M(A,Γ)

Spec(B) Spec(R)

pA

f

where the front and back squares are pullbacks. To define an R-module F(f), note that

the map Spec(B)→M(A,Γ) factors through pA, so we may define a B-module M ⊗AB asso-

ciated to this composite as before. This B-module comes equipped with canonical descent

datum for the cover Spec(B) → Spec(R), by pulling back the descent datum for the cover

Spec(A)→M(A,Γ) given by the A module M and the isomorphism of Γ-modules

Γ⊗AM
1⊗ψÐÐ→ Γ⊗A Γ⊗AM

τÐ→M ⊗A Γ⊗A Γ
1⊗µÐÐ→M ⊗A Γ

where

τ(g1 ⊗ g2 ⊗m) =m⊗ g1 ⊗ g2

and µ is the multiplication map on Γ. By faithfully flat descent this determines an R-module

which we define to be F(f). We refer the reader to the proof of Theorem A in [46] for more

details.
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Remark 2.1.55. One has, as usual, a tensor product of OM modules given by sheafifying the

presheaf

(F ⊗OM G)pre(Spec(A) xAÐ→M) = F(xA)⊗A G(xA)

Under the equivalence of the preceding theorem, one can show this corresponds to the co-

module tensor product, where (M,ψM)⊗ (N,ψN) is the A-module M ⊗AN with coaction

M ⊗AN
ψM⊗ψNÐÐÐÐ→ Γ⊗AM ⊗A Γ⊗AN

1⊗τ⊗1ÐÐÐ→ Γ⊗A Γ⊗AM ⊗AN
µ⊗1⊗1ÐÐÐ→ Γ⊗AM ⊗AN

2.1.4 MFG

Chromatic homotopy enters into the world of algebraic geometry and stacks via the mod-

uli stack of formal groups. We explain in the next section how this comes from topology;

in this section we stay grounded in the algebraic geometry and prove some of the main re-

sults concerning the geometry of MFG. This stack turns out to be surprisingly rigid: we

show that - when localized at a prime - the classical invariant prime ideal theorem gives a

classification of the open substacks of MFG. This, along with Lazard’s theorem on height,

gives a complete description of the associated space of the stackMFG. This is a significant

step in understanding a moduli problem. Going further, one seeks to understand the au-

tomorphisms of the points in this space, and this leads one to studying Morava stabilizer

groups and their action on Lubin-Tate spaces. We do not discuss this, as will not need this

part of the theory for our applications. For the reader interested in reading about this part

of the theory from the stacks point of view, we recommend Lurie’s notes [58] and Goerss’s

notes [27]. We continue in this section to work in the flat topology on affine schemes, and

we fix our ground ring k to be Z, or Z(p) when working locally at a prime p. We begin by

defining our arithmetic object of interest:

Definition 2.1.56. A formal group law over a commutative ring R is a power series

F (x, y) = x + y + ∑
i,j≥1

aijx
iyj ∈ R[[x, y]]

satisfying the following properties:
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• F (x,0) = x

• F (x, y) = F (y, x)

• F (F (x, y), z) = F (x,F (y, z)) ∈ R[[x, y, z]]

Remark 2.1.57. These properties of F (x, y) read like the defining properties of an abelian

group, and that is no accident; indeed, a choice of formal group law F over R is equivalent

to a choice of co-abelian group object structure on R[[x]] in the category of topological

R-algebras, where R[[x]] has the (x)-adic topology. Working dually, the (x)-adic topology

on R[[x]] is replaced by working in the category of formal schemes. In particular, for a

category C we may define the category Ind(C) to have objects sequences

{c0 → c1 → c2 → ⋯}

for ci ∈ C, such that

HomInd(C)({ci},{di}) = limi colimj HomC(ci, dj)

We then simply define the category of formal schemes over R to be

FormalSch/R ∶= Ind(Aff/Spec(R))

and a formal group law over R is the data of an abelian group structure on the formal

R-scheme

Spf(R[[x]]) ∶= {Spec(R)→ Spec(R[x]/x2)→ Spec(R[x]/x3)→ ⋯}

Example 2.1.58. We give two straightforward examples of formal group laws. Both of

these come from the same construction: there is a functor

AbGrp(Aff/Spec(R))→AbGrp(FormalSch/R)

between categories of abelian group objects which is called “completion at the identity.” If

G ≅ Spec(S) is an affine abelian group scheme over Spec(R), one has an R-algebra map
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ε ∶ S → R dual to the identity structure map. One checks that the group structure on G

determines a group structure on the formal R-scheme

Ĝ ∶= {Spec(R)→ Spec(S/ker(ε)2)→ Spec(S/ker(ε)3)→ ⋯}

Given an isomorphism of formal schemes Ĝ ≅ Spf(R[[x]]), one therefore has a formal group

law over R.

• Ga: Consider the group scheme defined by Ga(S) = S for an R-algebra S, where S is

regarded as an abelian group by forgetting the ring structure. One has an isomorphism

Ga ≅ Spec(R[x]), where the group structure is dual to the map

R[x]→ R[x]⊗R R[x] ≅ R[x, y]

x↦ x⊗ 1 + 1⊗ x↦ x + y

and the identity map ε ∶ R[x] → R is the one sending x to zero, so that ker(ε) = (x).

It follows that Ĝa is determined by the formal group law F (x, y) = x + y.

• Gm: Consider the group scheme defined by Ga(S) = S× for an R-algebra S. One has

an isomorphism Gm ≅ Spec(R[x±]), where the group structure is dual to the map

R[x±]→ R[x±]⊗R R[x±] ≅ R[x±, y±]

x↦ x⊗ x↦ xy

and the identity map ε ∶ R[x±] → R is the one sending x to 1, so that ker(ε) = (x − 1).

One has isomorphisms

R[x±]/ker(ε)n ≅ R[x±]/(x − 1)n ≅ R[t]/tn

where the latter isomorphism sends x↦ t+ 1. It follows that Ĝm is determined by the

formal group law F (t1, t2) = t1 + t2 + t1t2.

We are of course interested in the moduli problem of such group laws, so we make the

following definition:
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Definition 2.1.59. An isomorphism of formal group laws f ∶ F1 → F2 over R is a power

series

f(x) = b0x + b1x
2 + b2x

3 +⋯ ∈ R[[x]]

such that b0 ∈ R× and f(F1(x, y)) = F2(f(x), f(y)) ∈ R[[x, y]]. We say the isomorphism f

is strict if b0 = 1.

The condition that b0 be a unit guarantees that the power series f has a compositional

inverse, as may be checked explicitly. This defines a groupoid of formal group laws over a

ring R, and this groupoid is functorial in R in a natural way. Suppose f ∶ R → S is a ring

map, and

F (x, y) = x + y +∑
i,j

aijx
iyj

is a formal group law over R. We may push forward F along f , setting

f∗F (x, y) = x + y + ∑
i,j≥1

f(aij)xiyj

and it follows that f∗F is a formal group law over S. We use the pullback notation f∗

because this construction is the natural pullback construction on the corresponding formal

schemes. The following theorem gives us substantial control over this moduli problem (see

Lazard [55] and [77, Appendix A2]).

Theorem 2.1.60. The functor CAlg → Sets sending a commutative ring R to the set of

formal group laws over R is corepresentable. The co-representing ring L is called the Lazard

ring and there is an isomorphism

L ≅ Z[x1, x2, . . .]

The groupoid of formal group laws and isomorphisms as in Definition 2.1.59 determines

a Hopf algebroid structure on the pair (L,L[b±0 , b1, b2, . . .]), and the groupoid of formal group

laws and strict isomorphisms determines a Hopf algebroid (L,L[b1, b2, . . .]).
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Definition 2.1.61. We define the stacks

MFG ∶=M(L,L[b±0 ,b1,b2,...])

MFG(1) ∶=M(L,L[b1,b2,...])

Remark 2.1.62. We pause to comment on gradings. We define a graded ring R∗ to be an

associative monoid in the category of graded abelian groups with the graded tensor product;

a graded-commutative ring R∗ is a commutative monoid, where the braiding is given by the

usual Koszul sign rule. We define, on the other hand, a commutative graded ring to be a

commutative ring R along with an isomorphism of abelian groups

R ≅⊕
i∈Z
Ri

such that 1 ∈ R0 and the multiplication on R restricts to maps Ri ⊗Ri → Ri+j. Note that

when a graded-commutative ring R∗ is concentrated in even degrees, setting R = ⊕
i∈Z
Ri gives

a commutative graded ring.

For a commutative ring R, the structure of a commutative graded ring on R is equivalent

to an action of the affine group scheme Gm on the affine scheme Spec(R). In particular,

such an action is equivalent to the structure of a Z[x±]-comodule algebra on R, where the

Hopf algebra Z[x±] is defined by setting ∆(x) = x⊗ x, and the homogeneous elements r ∈ R

of degree n are those such that ψ(r) = xr ⊗ r, where ψ is the coaction map

R
ψÐ→ Z[x±]⊗R

In the above theorem, setting ∣xi∣ = 2i and ∣bi∣ = 2i determines a Gm action on the stack

MFG(1). This action can also be described as the one sending a unit r ∈ R× and a formal

group law F (x, y) over R to the formal group law

r−1F (rx, ry)

Using this, one may check that there is an equivalence of stacks

MFG(1)/Gm ≃MFG
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and the Gm-torsor MFG(1) → MFG is classified by the line bundle ω ∶ MFG → BGm

discussed below in Remark 2.1.67.

We have only defined quotient stacks M/Gm when M is an affine scheme. However,

there is a straightforward definition that resembles that of the homotopy orbit construction

on G-spaces. For a group scheme G, we set

M/G ∶= a(EG ×GM)

where EG is the prestack sending Spec(R) to the action groupoid BG(R)(G(R)) of the

G(R)-set G(R).

Definition 2.1.63. There is more generally a stack MFG(m), the moduli stack of formal

groups together with an m-jet. That is,

MFG(m)(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Objects: formal group laws over R

Morphisms: f ∶ F → G such that f(x) ≡ x mod xm+1

These stacks will be especially important to us in the final chapter.

We show now that the functor sending a commutative ring R to the groupoid of formal

group laws over R and strict isomorphisms satisfies descent: i.e. one has an equivalence

Mpre
(L,L[b1,b2,...])

≃MFG(1)

Theorem 2.1.64. The prestack Mpre
(L,L[b1,b2,...])

is a stack.

Proof. Spec(L) and Spec(L[b1, b2, . . .]) are representable presheaves and therefore sheaves,

as the flat topology is subcanonical (see [85, tag 03NV]). We set

M ∶=Mpre
(L,L[b1,b2,...])

It remains to show, therefore, that for every faithfully flat cover

∐
i

Spec(Ri)→ Spec(R)
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whenever we have Fi ∈M(Spec(Ri)) along with isomorphisms

fij ∶ Fi∣Spec(Ri)×Spec(R)Spec(Rj) → Fj ∣Spec(Ri)×Spec(R)Spec(Rj)

satisfying the cocycle condition (i.e. fik = fjk ○ fij), there exists a formal group law

G ∈M(Spec(R))

so that G∣Spec(Ri) ≅ Fi for all i. We set X = Spec(R) and Ui = Spec(Ri).

For this argument, we need to recall the basics of Cech cohomology. Suppose F is a

sheaf, and {Ui →X} is a cover, then we may form the Cech nerve of this cover, a simplicial

object:

∐
i
Ui ∐

i,j
Ui ×X Uj ∐

i,j,k
Ui ×X Uj ×X Uk⋯

Applying F to this diagram, we have a cosimplicial object

∏
i
F(Ui) ∏

i,j
F(Ui ×X Uj) ∏

i,j,k
F(Ui ×X Uj ×X Uj)⋯

If F is an abelian sheaf, we can take the alternating sum of the maps appearing in this

cosimplicial object, and we get a cochain complex. This cochain complex, by definition,

computes the Cech cohomology of F with respect to the given cover {Ui → U}. The “cocycle

condition” that we see on a family αij then becomes exactly the condition that the tuple (αij)

forms a cocycle in this chain complex, in particular an element of Ž1, and so it represents a

class in Ȟ1(X;F). That condition simply reads

αik = αjk + αij

for all i, j, k. When F = Ga, this cohomology group always vanishes on affine schemes (in

both the Zariski and flat topologies). Ga is quasicoherent, and X is affine, so this follows

from Serre’s vanishing theorem (see [85, tag 03OY]).

Since the functor R ↦ {Formal Group Laws over R} is a sheaf of sets, if instead of the

(Fi, fij) we have above, we simply had Gi such that Gi∣Ui×XUj and Gj ∣Ui×XUj were equal, then
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we could construct the desired G restricting to Gi, by the gluing condition of a sheaf. We

are of course given less than that, but we’re going to use the above observations about Cech

cohomology to show that we can change our Fi’s up to isomorphism to form a family Gi as

above.

We proceed by induction; we construct a family of power series gi(x) inductively, and

our Gi’s will be conjugates of the Fi’s by these gi’s. Setting

g
(1)
i (x) = x

for all i, we assume by induction there exists a family of power series

g
(n−1)
i (x) ∈ OX(Ui)[[x]] = Ri[[x]]

with the property that

(g(n−1)
j )((g(n−1)

i )−1(x)) ≡ fij(x) mod xn

as power series in x over the ring OX(Ui ×X Uj) = Ri ⊗R Rj. Now we will define

g
(n)
i (x) = g(n−1)

i (x) + bn(i)xn

and we will show that we can choose bn(i) ∈ Ri appropriately. We make use of the following

fact: if f(x) is some invertible power series, then if we set g(x) = f(x) + axn,

g−1(x) ≡ f−1(x) − axn mod xn+1

This gives

(g(n)j )((g(n)i )−1(x))

≡ g(n−1)
j ((g(n−1)

i )−1(x) − bn(i)xn) + bn(j)(g(n−1)
i (x) − bn(i)xn)n mod xn+1

≡ g(n−1)
j ((g(n−1)

i )−1(x)) + (bn(j) − bn(i))xn mod xn+1

but by our inductive hypothesis, we have

g
(n−1)
j ((g(n−1)

i )−1(x)) ≡ fij(x) + c(n)ij x
n mod xn+1
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for some c(n)ij . The induction is complete if we can choose a family bn(i)’s with the property

that bn(i)−bn(j) = c(n)ij , i.e. if the family c(n)ij is a coboundary in the Cech complex computing

Ȟ1(X;Ga) = 0. It is therefore sufficient to know that the c(n)ij ’s form a cocycle. This amounts

to knowing that c(n)ik = c(n)ij + c(n)jk for all i, j, k on the triple intersections OX(Ui ×X Uj ×X Uk),

but we know that fik = fjk ○ fij so we have

g
(n−1)
k ((g(n−1)

i )−1(x)) − c(n)ik x
n

≡ fik(x) mod xn+1

≡ fjk(fij(x)) mod xn+1

≡ fjk(g(n−1)
j ((g(n−1)

i )−1(x)) − c(n)ij x
n) mod xn+1

≡ fjk(g(n−1)
j ((g(n−1)

i )−1(x))) − c(n)ij x
n mod xn+1

≡ g(n−1)
k ((g(n−1)

j )−1(g(n−1)
j ((g(n−1)

i )−1(x)))) − c(n)jk (g(n−1)
j ((g(n−1)

i )−1(x)))n

− c(n)ij x
n mod xn+1

≡ g(n−1)
k ((g(n−1)

i )−1(x)) − c(n)jk x
n − c(n)ij x

n mod xn+1

from which the result follows by collecting the coefficients of xn on each side.

We now define

Gi(x, y) = g−1
i (Fi(gi(x), gi(y)))

All that’s left to check is that

Gi∣Ui×XUj = Gj ∣Ui×XUj

But we have

gj(Gi(x, y)) = gj(g−1
i (Fi(gi(x), gi(y))))

= fij(Fi(gi(x), gi(y)))

= Fj(fij(gi(x), gi(y)))

= Fj(gj(x), gj(y))
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where we used fij = gjg−1
i and that fij is an isomorphism from Fi to Fj. Applying g−1

j to

both sides we have

Gi(x, y) = g−1
j (Fj(gj(x), gj(y))) = Gj(x, y)

Remark 2.1.65. The above argument is elementary and explicit, but one can summarize the

argument in a more conceptual way (see also [58, Lecture 11]). The difficulty in this approach

is that one has to define Ȟ1 for a sheaf of nonabelian groups; this is not difficult, but we

omit it here. Suppose there is a reasonable notion of Ȟ1(X;G) for a sheaf of nonabelian

groups G with the property that it recovers the usual notion when G is abelian, sends short

exact sequences of group schemes to exact in the middle sequences, and cocycle data as

in our fij’s determine classes in Ȟ1, so that they determine a coboundary precisely when

these gi can be constructed. If G is the group scheme represented by Spec(Z[b1, b2, . . .]) with

group structure coming from composition of power series x+∑i≥1 bix
i+1, then G has subgroup

schemes Gn, whose R-points consist of power series of the form

x + bnxn+1 +⋯

i.e. those that are congruent to x mod xn+1. The R-points of the quotient group scheme

G/Gn can be identified with the subgroup of “strict” automorphisms of the affine formal

scheme

{Spec(R)→ Spec(R[x]/x2)→ Spec(R[x]/x3)→ ⋯→ Spec(R[x]/xn) =Ð→ ⋯}

More explicitly, G/Gn is Spec of the ring that corepresents polynomials of the form

x + b1x
2 +⋯ + bn−2x

n−1

with group structure given by composition according to the rule that xn = 0. Since every

power series is uniquely determined by its truncations mod xn for every n, it follows that G
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is the inverse limit of G/Gn. We therefore need only show that Ȟ1(X;G/Gn) vanishes, for

all n. Noting that G/G2 ≅ Ga and Gn/Gn+1 ≅ Ga, the short exact sequences coming from

Gn+1 ⊂ Gn ⊂ G

1→ Gn/Gn+1 → G/Gn+1 → G/Gn → 1

tell us by induction that since Ȟ1(X;Ga) = 0, Ȟ1(X;G/Gn) = 0 for all n.

In fact, the conclusion of Theorem 2.1.64 is true forMFG(m) for all m ≥ 1. This is not

the case forMFG in the non-strict case. The above argument breaks down in the base case;

namely, we can’t simply define g(1)i (x) = x because we aren’t assuming that our isomorphisms

fij are strict. If we wanted to run the same argument, since the b0’s have to be units, we

would at the very first step encounter the group

Ȟ1(X;Gm)

In contrast to Ga, these cohomology groups don’t always vanish - in fact they are isomorphic

to the group of Gm-torsors on X, or equivalently line bundles on X. These cohomology

classes are thus the obstructions to (MFG)pre being a stack. The question becomes - how

does one describe the objects in MFG(Spec(R))? That is, what happens to formal group

laws upon stackification? We make the following somewhat flippant definition and then use

our understanding of stackification to elaborate.

Definition 2.1.66. A formal group over a commutative ring R is an object of the groupoid

MFG(Spec(R)).

Remark 2.1.67. In principle, a formal group over R is then simply a choice of faithfully flat

cover {Spec(Ri)→ Spec(R)}i∈I , a choice of formal group law Fi on Ri for each i, and a choice

of family of isomorphisms

fij ∶ Fi∣Spec(Ri)×Spec(R)Spec(Rj) → Fj ∣Spec(Ri)×Spec(R)Spec(Rj)

that satisfy the cocycle condition. The various b0’s that appear in the power series fij’s then

determine a line bundle on Spec(R) as above, and this line bundle is what we call ω. Since
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ω is natural under pullbacks, it determines a line bundle onMFG, i.e. a quasicoherent sheaf

F onMFG with the property that for all maps

xA ∶ Spec(A)→MFG

(xA)∗F is a line bundle on Spec(A).

This definition, however, is somewhat clunky, so we make use of the following proposition:

Proposition 2.1.68. (See [44, Definition 15.5]) A formal group over R is equivalent data

to the following

• An augmented R-algebra ε ∶ A→ R with augmentation ideal m such that

1. A is complete with respect to the m-adic topology.

2. m/m2 is locally free of rank one over R.

3. The associated graded of the m-adic filtration of A is isomorphic to SymR(m/m2).

• An abelian group object structure on the formal R-scheme {Spec(A/mn)}.

Proof. Given a formal groupG overR, the line bundle ω from the previous remark determines

a locally free of rank one R-module P . Let A be the commutative ring

R[[P ]] ∶= lim←Ð
n

R[P ]/P n

where R[P ] = SymR(P ) and R[P ]/P n is the quotient of R[P ] by the n-th power of its

augmentation ideal. The group structures on

Spf(A) ×Spec(R) Spec(Ri) ≅ Spf(Ri[[x]])

glue to give Spf(A) an abelian group structure. Conversely, if we are given the structure

in the proposition, pulling back to each Spec(Ri), one has a family formal group laws with

descent data, which determines an object ofMFG(Spec(R)) sinceMFG is a stack.
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Remark 2.1.69. We have defined the stack MFG in the flat topology. It turns out that for

MFG, we could have used the Zariski topology and nothing would change. This is because

the only obstruction to stackification is this line bundle ω above. In both the Zariski and

flat topologies, a line bundle over an affine scheme is the same thing as a projective module

of rank one (see [44, 15.7]). This is why, for instance, in the definition of formal group

appearing in [58, Lecture 11], Lurie uses Zariski covers.

Definition 2.1.70. A coordinate on a formal group G over R is a choice of formal group

law F over R and an isomorphism F → G inMFG(Spec(R)). Equivalently, a coordinate on

G is a choice of isomorphism of formal R-schemes

G ≅ Spf(R[[x]])

Remark 2.1.71. Note that a coordinate on G exists if and only if the line bundle ω associated

to G is trivializable. We summarize this in the following tower of fibrations, which shows

also how the stacksMFG(m) fit into the cohomological argument used in Theorem 2.1.64

Spec(L) BGa

⋮

M(n)
FG BGa

⋮

M(1)
FG BGa

Spec(R) MFG BGm
G

coordinatizability

choice of coordinate

ω

Given a formal group G, G is coordinatizable if and only if ω(G) is trivializable, i.e. iff the

composite ω ○G is trivial, i.e. iff G factors thru the fiberM(1)
FG, i.e. iff G may be equipped

with a 1-jet. A choice of coordinate on G is a lift all the way to Spec(L) as indicated in
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the diagram, i.e. to realize G as a formal group law and to fix a map from the Lazard ring

classifying it. But since the fibers above the first step of the diagram are all Ga’s, there is no

obstruction to lifting each step, as we saw in the proof of Theorem 2.1.64. A lift toMFG(n)

in the above diagram may be thought of as a choice of coordinate of G through degree n, or

as equipping G with an n-jet.

2.1.5 (MFG)(p) and height

We finish this section by localizing MFG at a prime and showing that it then admits a

filtration by height. We fix a prime p for the rest of the section.

Definition 2.1.72. For n a positive integer, let the [n]-series of a formal group law F over

R be defined inductively by [1]F (x) = x and

[n]F (x) = F (x, [n − 1]F (x))

Let vn denote the coefficient of xpn in the power series [n]F (x) and note that v0 = p. We say

F has height ≥ n if vi = 0 for all i < n, and we say F has height exactly n if F has height ≥ n

and vn ∈ R×.

Example 2.1.73. Let R = Fp, one checks that

[p]Ĝa(x) = 0

and

[p]Ĝm(x) = xp

Therefore Ĝa has height ≥ n for every n, i.e. Ĝa has height ∞, and Ĝm has height 1. It is

not difficult to show that height is an invariant of a formal group law, and hence we see that

over Fp, Ĝa and Ĝm are not isomorphic.

Remark 2.1.74. We will not need this notion, but it makes sense to ask for the height

of a formal group, i.e. the notion of height makes sense not just in MFG(1) but also in
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MFG. Indeed, a formal group G still admits an endomorphism [p] ∶ G → G and one defines

the height of G to be ≥ n if [p] factors through the Frobenius on G at least n − 1 times.

See [27, Definition 5.2] for more details.

It turns out that, working p-locally, the coefficients vn defined above capture all the

information about a formal group G within the stack (MFG)(p), i.e. up to isomorphism and

faithfully flat base change. More precisely we have the following:

Proposition 2.1.75. Let f ∶ Spec(Z(p)[v1, v2, . . .]) → (MFG)(p) be the morphism classified

by pushing forward the universal formal group law along the map

L = Z[x1, x2, . . .]→ Z(p)[v1, v2, . . .]

sending xi ↦ 0 for i ≠ pk − 1 and xpk−1 ↦ vk. Then f is faithfully flat.

Proof. See Example 7 in [58, Lecture 15]. The claim made therein is that f is flat, but the

proof shows it is in fact also faithful.

Remark 2.1.76. One may establish the above proposition using the so-called Landweber

criterion for flatness, which we discuss in the next section. Note that by Theorem 2.1.44,

the pullback diagram

Spec(B) Spec(Z(p)[v1, v2, . . .])

Spec(Z(p)[v1, v2, . . .]) (MFG)(p)

- where B ≅ Z(p)[v1, v2, . . .]⊗L L[b±0 , b1, . . .]⊗L Z(p)[v1, v2, . . .] - gives an equivalence of stacks

M(Z(p)[v1,v2,...],B) → (MFG)(p)

The above proposition suggests that the [p]-series of a formal group and the notion of

height may be capturing a lot of information about (MFG)(p); we therefore consider the

filtration induced on (MFG)(p) by height.
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Definition 2.1.77. Let In ⊂ Z(p)[v1, v2, . . .] be the ideal (p, v1, . . . , vn−1). The moduli stack

of formal groups of height ≥ n is the stack

M≥n
FG ∶=M(Z(p)[v1,v2,...]/In,B/In)

It is straightforward to check thatM≥n
FG is a closed substack of (MFG)(p), and we define the

moduli stack of formal groups of height ≤ n

M≤n
FG ∶= (MFG)(p) ∖M≥n+1

FG

Remark 2.1.78. In order to know that (Z(p)[v1, v2, . . .]/In,B/In) is indeed a Hopf algebroid,

one needs to know that In is an invariant ideal, i.e. that ηR(In) ⊂ ηL(In) ⋅B. We will return

to this notion in the next section.

Example 2.1.79. 1. Note that if F is a formal group law over a p-local ring R, F has

height ≤ 0 if and only if R is a Q-algebra. The theory of formal groups over Q-algebras

is quite simple: one can show that for every formal group law F over a Q-algebra R,

there exists a unique strict isomorphism

log ∶ F → Ĝa

called the logarithm of F (see [77, Appendix A2]). Moreover the automorphism group

of the formal group law Ĝa over a Q-algebra R is isomorphic to R×, where r ∈ R×

corresponds to the power series f(x) = rx. The strict automorphism group is therefore

trivial. This gives the following identifications

• MFG × Spec(Q) ≃ BGm × Spec(Q)

• MFG(1) × Spec(Q) ≃ Spec(Q)

• M≤0
FG ≃MFG × Spec(Q) ≃ BGm × Spec(Q)

2. In [55], Lazard proved that, over an algebraically closed field k, any two formal group

laws are isomorphic if and only if they have the same height 0 ≤ h ≤ ∞ (see also [58,
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Lecture 14]), and over any such k, for all n, there exists a formal group law of height

n over k. In particular, fix a formal group law Fn of height n over k, and let Gn be its

automorphism group. One has an equivalence

M=n
FG × Spec(k) ≃ BGn × Spec(k)

We now want to give a presentation of the stack M≤n
FG using our results on locally pre-

sentable stacks; this will strengthen our understanding of the filtration of (MFG)(p) by the

open substacksM≤n
FG. We need first a criterion of Landweber.

Proposition 2.1.80. (Landweber’s exact functor theorem) The map classifying a formal

group law Spec(R) FÐ→ (MFG)(p) is flat if the sequence (p, v0, v1, . . .) is a regular sequence in

the ring R.

Proof. The original reference is [54]. We refer the reader to [44, Section 21] for a stacks

theoretic proof.

Proposition 2.1.81. Let f ∶ Spec(Z(p)[v1, . . . , vn−1, v±n]) → M≤n
FG be classified by the map

Z(p)[v1, v2, . . .] → Z(p)[v1, . . . , vn−1, v±n]. Letting Rn ∶= Z(p)[v1, . . . , vn−1, v±n], we have the fol-

lowing:

1. The map f is a faithfully flat cover, and it induces an equivalence

M(Rn,Rn⊗L(p)L(p)[b
±
0 ,b1,...]⊗L(p)Rn)

→M≤n
FG

2. The map f factors through MFG(1), and the map

f ∶ Spec(Rn)→M≤n
FG(1)

is a faithfully flat cover, where M≤n
FG(1) is defined by the pullback

M≤n
FG(1) (MFG(1))(p)

M≤n
FG (MFG)(p)
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The map f therefore induces an equivalence

M(Rn,Rn⊗L(p)L(p)[b1,...]⊗L(p)Rn)
→M≤n

FG(1)

Proof. For (1), M≤n
FG is locally presentable by Lemma 2.1.35. By the lemma below, the

composition

Spec(Rn)
fÐ→M≤n

FG ↪ (MFG)(p)

is flat. f is therefore flat by the lemma below.

To show that f is faithful, note that it suffices to show that for any map xA ∶ Spec(A)→

M≤n
FG, the pullback (xA)∗f is faithfully flat. In general, a flat map of schemes is faithfully

flat if and only if it is surjective. A map of schemes X → Y is surjective if and only if it

induces a surjection on functor of points X(k) → Y (k) for every algebraically closed field

k. It follows that an affine flat map of stacks is faithfully flat if and only if it is essentially

surjective on k-points for all algebraically closed fields k. By Lazard’s theorem in item (2) of

Example 2.1.79, for k of characteristic p,M≤n
FG(k) has exactly n connected components, one

for each height ≥ 1, and for k of characteristic zero,M≤n
FG(k) has one connected component.

In characteristic p, for each 1 ≤ i ≤ n, the map Rn → Fp that sends vj ↦ 0 for i ≠ i, n and

vi, vn ↦ 1 determines a height i formal group law over Fp, which we then push forward to k

to hit the i-th connected component. We argue similarly in the characteristic zero case.

For (2), Here, we have used the fact Spec(Rn) →M≤n
FG(1) is flat by the lemma below,

but it is not immediate from (1) that it is faithful because the Gm-torsorMFG(1) has more

points than its quotient MFG. For this, we must use the theory of p-typical formal group

laws over a Z(p)-algebra, and we refer the reader to [77, Appendix A2] for more details. Since

f hits every point ofM≤n
FG(1)/Gm ≃M≤n

FG, it suffices to show that for a given formal group

law F of height i ≤ n over an algebraically closed field k, f hits every point in the Gm-orbit

of F . We again omit the characteristic zero argument and let k have characteristic p. We

use the Araki coordinate when speaking of p-typical formal group laws, and we give the

argument for when i < n; the i = n case is similar.
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Let F be the p-typical formal group law over Fp defined by the map

Rn
FÐ→ Fp

sending vi, vn ↦ 1 and vj ↦ 0 for j ≠ i, n. By Lazard’s theorem, if G is a formal group law of

height i over a field of characteristic p then there exists some isomorphism φ ∶ F → G over

an algebraically closed field k. If φ is a strict isomorphism, then the isomorphism φ lifts to

MFG(1), and f hits the point corresponding to G. If φ(x) ≡ ux mod x2 for some u ∈ k×,

then one has a strict isomorphism

ψ ∶ (uF )→ G

where

uF (x, y) = uF (u−1x,u−1y)

and

ψ(x) = φ(u−1x)

To show that f hits the point corresponding to G inMFG(1), it thus suffices to show that

f hits the point corresponding to uF inMFG(1). One checks that since F is p-typical, and

[p]F (x) = x +F xp
i +F xp

n

it follows that uF is p-typical with

[p]uF (x) = x +uF u1−pixp
i +uF u1−pnxp

n

Therefore the map Rn → k sending vi ↦ u1−pi , vn ↦ u1−pn , and vj ↦ 0 for j ≠ i, n is sent by f

to the point corresponding to G.

Lemma 2.1.82. Suppose that the composite Spec(R) fÐ→ M ↪ N is flat, for M and N

locally presentable, and M ⊂ N is a (full) open substack. Then f is flat.
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Proof. Suppose we have the following diagram

Spec(T ) Spec(R)

Spec(S) M

Spec(S) N

f ′ f

=

where the upper square is a pullback. It suffices to show that f ′ is flat. If we knew the

bottom square were a pullback, then the big rectangle would be a pullback and then f ′

would be flat since the righthand vertical composite is flat by assumption. One can check

explicitly that the bottom square is a pullback by checking that

(Spec(S) ×NM)(A)

is discrete with objects Spec(S)(A) for any ring A.

These open substacksM≤n
FG are in some sense the only ones one can construct. We will

make this precise by first recalling the following result of Landweber.

Proposition 2.1.83. (Landweber’s invariant prime ideal theorem) Let (A,Γ) be a Hopf

algebroid and I ⊂ A an ideal. We say I is invariant if ηR(I) ⊂ ηL(I) ⋅ Γ. For

(A,Γ) = (L(p), L(p)[b±0 , b1, . . .])

the only invariant prime ideals of L(p) are the ideals

In = (p, v1, . . . , vn−1)

for 0 ≤ n ≤∞.

Proof. See [79, Theorem 3.3.5].

We define now the associated space of a stack. It is a useful invariant that encodes

theorems such as Lazard’s theorem on height and Landweber’s invariant prime ideal theorem.
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Definition 2.1.84. LetM be a stack, we define a topological space ∣M∣ - called the asso-

ciated space of the stack M - as follows. ∣X ∣ has points consisting of the set of objects in

X(k) for fields k modulo the equivalence relation that if xi ∈ X(ki) for i = 1,2, then x1 ≃ x2

if there is a common field extension K of ki so that x1 and x2 become isomorphic in X(K).

The open sets in ∣X ∣ are of the form ∣U ∣ for U an open substack of X.

Lemma 2.1.85. Let (A,Γ) be a Hopf algebroid. Every closed substack of M(A,Γ) is of the

form M(A/I,Γ/I) for I an invariant ideal.

Proof. If Z ⊂M(A,Γ) is a closed substack, we may form the pullback square

Spec(A/I) Z

Spec(A) M(A,Γ)

Since Z is a substack, it follows that I is invariant. Spec(A/I)→ Z is a faithfully flat cover,

and by Lemma 2.1.35, Z is locally presentable, so it suffices to observe that in the following

diagram
Spec(Γ/I) Spec(A/I) Spec(A)

Spec(A/I) Z M(A,Γ)

the right and outer squares are pullbacks, so the left square is a pullback. The result then

follows as usual from Theorem 2.1.44.

Theorem 2.1.86. There is a homeomorphism from the space ∣(MFG)(p)∣ to the space with

underlying set Z≥0 ∪ {∞} and nonempty proper open sets precisely those of the form

Un = {i ∈ Z≥0∣i ≤ n}

Proof. Lazard’s theorem on height immediately implies that the underlying set is Z≥0∪{∞},

and the corresponding map

∣(MFG)(p)∣→ Z≥0 ∪ {∞}
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is continuous because ∣M≤n
FG∣ = Un. Conversely, if ∣U ∣ ⊂ ∣(MFG)(p)∣ is a proper open subset, we

have a closed substack Z ∶= (MFG)(p) ∖ U with ∣Z ∣ = ∣(MFG)(p)∣ ∖ ∣U ∣ nonempty and proper.

By Lemma 2.1.85, we have an equivalence

Z ≃M(L(p)/I,L(p)[b
±
0 ,b1,...]/I)

for I a nonzero, proper invariant ideal. For the rest of the proof, we implicitly work p-locally,

in particular writing L to mean L(p).

Because we are working overMFG ≃MFG(1)/Gm, I must in particular be a homogeneous

ideal with respect to the grading on the Lazard ring L ≅ π∗(MU). Indeed, an ideal I ⊂ L is

invariant with respect to the Hopf algebroid (L,L[b±0 , b1, . . .]) if and only if it is homogeneous

and invariant with respect to the Hopf algebroid (L,L[b1, b2, . . .]).

We may therefore apply the results of [52, Section 2]. In particular, we must have

(p) ⊂ I ⊂ I∞

(see [52, pg. 277]). We say Spec(L/I) has a height n point if there exists a field k and a ring

map L/I → k that carries the universal formal group law over L to a height n formal group

law over k. We claim that either

∣Z ∣ = ∣M∞
FG∣

or there exists a positive integer nI such that Spec(L/I) has a height m point if and only if

m ≥ nI . This completes the proof as in the latter case,

∣Z ∣ = ∣M≥nI
FG ∣

Let n be the largest positive integer such that In ⊂ I (note n ≥ 1 as I1 = (p)). We

construct inductively a sequence of ideals

In = Jn ⊂ Jn+1 ⊂ ⋯ ⊂ I

Jm for m ≥ n such that
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• Jm is an invariant ideal

• Jm ⊂ Im

• Spec(L/Jm) has no points of height <m.

We begin for m = n by setting Jn = In.

Assume then that the ideals Ji for i ≤m have been constructed with the stated properties.

If Jm = I, then since Jm ⊂ Im, we have a factorization

Spec(L/Im) MFG

Spec(L/Jm)

and it follows that the points of Spec(L/Im) are contained in the points of Spec(L/Jm).

Conversely, since Spec(L/Jm) has no points of height <m, it follows that two sets of points

coincide. We then set nI ∶=m and stop the construction here.

If Jm ≠ I, then by [53, Lemma 2.10], the comodule I/Jm must have a nonzero primitive

y. One has an inclusion of primitives

Prim(I/Jm) ⊂ Prim(L/Jm)

From the short exact sequence of comodules

0→ Im/Jm → L/Jm → L/Im → 0

and the fact that

Prim(L/Im) ≅ Fp[vm]

(see [52, Proposition 2.11]), we have that there exists r ≥ 0 and z ∈ Im such that

y = vrm + z

We define the ideal

Km+1 ∶= Jm + (y)
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and the invariant ideal

Jm+1 ∶= ⋂
J homogeneous

inv. ideal
J⊃Km+1

J

to be the invariant closure ofKm+1. The intersection of homogeneous ideals is a homogeneous

ideal, and the intersection of invariant ideals for (L,L[b1, . . .]) is an invariant ideal, as I ⊂ L

is an invariant ideal in this case if and only if it is invariant under the action of the group of

power series over Z

f(x) = x + b1x
2 + b2x

3 +⋯

under composition (see [79, Proposition B.5.17]). Since Jm ⊂ Jm+1, and Spec(L/Jm) has no

height <m points, Spec(L/Jm+1) also has no height <m points. Suppose that Spec(L/Jm+1)

had a height m point, then the corresponding map

f ∶ L→ L/Jm+1 → k

would satisfy f(Im) = 0 since the formal group law has height m and f(y) = 0 since y ∈ Jm+1,

and therefore

f(vrm) = 0 Ô⇒ f(vm) = 0

as k is a field. This contradicts the fact that f classifies a height m formal group law, and

this completes the induction.

Finally if Jm ≠ I for all m, then Spec(L/I) has no height m points for any finite m, and

hence we must have in this case

∣Z ∣ = ∣M∞
FG∣ = {∞}

as ∣Z ∣ is nonempty.

2.2 Chromatic homotopy

In this section, we assume that the reader has a basic familiarity with the homotopy

theory of spectra. To fix notions, we work in the symmetric monoidal (∞,1)-category of
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spectra, Sp, as constructed by Lurie [59]. The homotopy category of spectra was first

constructed by Boardman in [13]; Lurie’s construction lifts Boardman’s to quasicategories.

Chromatic homotopy theory studies the robust connection between stable homotopy theory

and the theory of formal groups. This connection comes from a theorem of Quillen [76],

which gives a refinement of complex cobordism homology MU∗(−) to a functor

F ∶ Sp→QCoh(MFG(1))

This recasts classical computations in the Adams-Novikov spectral sequence as sheaf coho-

mology computations overMFG and gives a powerful conceptual approach to stable homo-

topy theory. In particular, lifting the height filtration of (MFG)(p) along the above functor

gives a filtration of the category of spectra. The rigidity of (MFG)(p) - as captured by

Theorem 2.1.86 - is strongly reflected in the category of finite spectra; this is the subject

of the Ravenel conjectures, which we discuss in Section 2.2.3. We begin in Section 2.2.1 by

defining the notion of a complex-oriented cohomology theory, and we show that each such

theory determines a formal group law. In Section 2.2.2, we define the functor F and show

that it admits a section on a certain locus of Landweber flat sheaves, via the Landweber

exact functor theorem.

By a homotopy commutative ring spectrum, we mean a commutative monoid object in

the symmetric monoidal category (Ho(Sp),∧,S).

2.2.1 Complex-oriented cohomology theories

The primary objects of study in chromatic homotopy are complex-oriented cohomology

theories. We begin with the definition of a complex orientation:

Definition 2.2.1. Let E be a homotopy commutative ring spectrum. A complex orientation

of E is a class x ∈ Ẽ2(CP∞) such that the restriction map

Ẽ2(CP∞)→ Ẽ2(CP1) = Ẽ2(S2) ≅ π0(E)
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sends x to 1. We say E is complex-orientable if there exists a complex orientation of E.

The space CP∞ classifies complex line bundles. There is therefore a map

µ ∶ CP∞ ×CP∞ → CP∞

classifying the line bundle π∗1L⊗ π∗2L over CP∞ ×CP∞, where πi ∶ CP∞ ×CP∞ → CP∞ is the

projection map on the i-th factor, and L is the tautological bundle over CP∞. This map

participates in the structure of an abelian group object on CP∞ in the category of spaces.

Therefore, for any homotopy commutative ring spectrum E, one has a commutative group

scheme

Spec(E∗(CP∞))

Moreover, the map µ restricts to a map CPn ×CPm → CPn+m, which gives the ind-system of

spaces

{CP1 → CP2 → CP3 → ⋯}

the structure of an abelian group object in the ind category of spaces, and hence one has an

abelian group object

GE = Spf(E∗(CP∞)) ∶= {Spec(E∗(CP1))→ Spec(E∗(CP2))→ ⋯}

in FormalSch/Spec(E∗), provided that E has Kunneth isomorphisms

E∗(CPn ×CPm) ≅ E∗(CPn)⊗E∗ E∗(CPm)

for all n,m. It is sufficient for E to admit an isomorphism of formal schemes

GE ≅ Spf(E∗[[x]])

in order for E to possess these Kunneth isomorphisms, and the complex-oriented cohomology

theories are precisely those theories E that admit such an isomorphism of formal schemes;

that is, those theories E such that GE can be represented by a formal group law over E∗.

65



If, on one hand, one has an isomorphism GE ≅ Spf(E∗[[x]]), then one has an isomorphism

of pro-E∗-algebras {E∗(CPn−1)} ≅ {E∗[x]/xn}. Since

lim1E∗[x]/xn = 0

and

lim←Ð
n

E∗[x]/xn ≅ E∗[[x]]

it follows from the Milnor sequence that there is an isomorphism E∗(CP∞) ≅ E∗[[x]], and

the class x is a complex orientation. Conversely, if E is complex-orientable, one has the

following.

Proposition 2.2.2. Suppose E is complex-orientable, then there is an isomorphism of formal

schemes

Spf(E∗CP∞) ≅ Spf(E∗[[x]])

over Spec(E∗), and in particular an isomorphism

E∗(CP∞) ≅ E∗[[x]]

of graded E∗-algebras, where x is in cohomological degree 2.

Proof. Fix a complex orientation x ∈ Ẽ2(CP∞). Since x is a reduced class, and CPn−1 has a

cover by n contractible open subsets, there is a well-defined E∗-algebra homomorphism

E∗[x]/xn → E∗(CPn−1)

To show this map is an isomorphism, we use the Atiyah-Hirzebruch spectral sequence, i.e.

the spectral sequence

E2 =H∗(CPn−1;E∗) Ô⇒ E∗(CPn−1)

arising from the cellular filtration of CPn−1. Give E∗[x]/xn a descending filtration by putting

x in filtration 2; this makes our map E∗[x]/xn → E∗(CPn−1) a map of filtered E∗-algebras.

The filtration on each is finite, so it suffices to show this map induces an isomorphism on
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associated graded. The universal coefficient theorem gives an isomorphism E2 ≅ E∗[x]/xn,

where x is the restriction of the complex orientation x along the map

Ẽ2(CPn−1)→ Ẽ2(CP1) ≅H2(CPn−1;E0)

In particular, x is a permanent cycle, and the spectral sequence is one of E∗-algebras, so

E2 = E∞.

The calculation of E∗(CP∞) then follows from the Milnor sequence; the structure maps

in the pro-system {E∗[x]/xn} are all surjective, hence it has vanishing lim1, and we have an

isomorphism

E∗(CP∞) ≅ lim←ÐE
∗(CPn) ≅ E∗[[x]]

Remark 2.2.3. Classically, one has an isomorphism of graded rings

f ∶H∗(CP∞;Z) ≅ Z[x]

where x is the generator in degree 2. In particular, x is a complex orientation of ordinary co-

homology, HZ, but the isomorphism f is off by a completion from the isomorphism provided

by the previous proposition. Notice that Z[x] and Z[[x]] determine the same underlying

graded abelian group, and the multiplication of homogeneous elements in these rings agree,

so they are isomorphic as graded rings, and there is no contradiction here. They are not

isomorphic as rings, however, and there are two issues at play. One is how we choose to

determine a ring R from the data of a graded ring R∗. If one defines the ring R = ⊕
n
Rn,

then, applying this to the graded ring H∗(CP∞;Z), we have the isomorphism f above as

rings. However, if one chooses to define R = ∏
n
Rn, then we have the isomorphism of the

previous proposition. In light of the classical isomorphism f , and the fact that Z[x] is a

free module over the coefficient ring HZ∗ = Z (whereas Z[[x]] is not a free Z-module), the

former choice would seem more sensible.
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We choose, however, to always identify E∗(CP∞) as a ring in the latter sense, and this

choice accounts for our other issue: HZ is bounded above. When E is not bounded above

(most of the ring spectra we consider are not bounded above), the calculation of the previous

proposition gives an isomorphism of graded E∗-modules

E∗(CP∞) ≅ E∗[[x]]

and this is not isomorphic to E∗[x], even as graded E∗-modules. For example in degree 0,

E0(CP∞) consists of power series

∑anx
n

where an ∈ E−2n = π2nE, and hence if infinitely many of the groups π2nE for n ≥ 0 are

nonvanishing, this is not isomorphic as an abelian group to the degree 0 component of

E∗[x].

Lemma 2.2.4. If E is complex-orientable, and x1, x2 are complex orientations of E, each

provides an isomorphism

Spf(E∗CP∞) ≅ Spf(E∗[[xi]])

via Proposition 2.2.2, and hence each provides a formal group law Fi over E∗. There is a

canonical strict isomorphism f ∶ F1 → F2 of formal group laws over E∗.

Proof. The zig zag

Spf(E∗[[x2]])← Spf(E∗CP∞)→ Spf(E∗[[x1]])

sends x2 to some power series

f(x1) = x1 +∑
j≥1

bjx
j+1
1 ∈ E∗[[x1]]

The coefficient of x1 is 1 because both complex orientations must restrict to 1 ∈ Ẽ2(CP1) ≅

π0E. Moreover, the above zig-zag is an isomorphism of formal groups, where the group
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structure on Spf(E∗[[xi]]) is given by Fi. This gives a commutative diagram

E∗[[x2]] E∗[[x2]]⊗̂E∗E∗[[x2]]

E∗[[x1]] E∗[[x1]]⊗̂E∗E∗[[x1]]

The counterclockwise image of x1 is f(F1(x1 ⊗ 1,1 ⊗ x1)), and the clockwise image is

F2(f(x1)⊗ 1,1⊗ f(x1)).

Remark 2.2.5. In other words, for E complex-orientable, a complex orientation gives a choice

of coordinate on the underlying formal group GE. Conversely, any coordinate on GE that

differs by a strict isomorphism from a coordinate coming from a complex orientation of E

determines a complex orientation of E. Said another way, if E is complex-orientable, there

is a canonical structure of a formal group equipped with a 1-jet on Spf(E∗CP∞), and a

complex orientation of E is the same thing as a coordinate on GE respecting the 1-jet.

We turn now to our most important example of a complex-oriented cohomology theory:

complex bordism.

Example 2.2.6. Let MU be the complex bordism spectrum. We construct MU first by

defining MU(n) to be the Thom space of the universal bundle En → BU(n). The inclusion

U(n − 1) → U(n) induces a map BU(n − 1) → BU(n), which pulls back En to the bundle

En−1 ⊕C. Applying the Thom space construction to this pullback diagram, one has maps

Σ2MU(n − 1)→MU(n)

and we define

MU = colimn Σ−2nMU(n)

MU has a canonical complex orientation as the zero section of E1 → CP∞ determines a

homotopy equivalence CP∞ ≃MU(1), which we use to define a complex orientation

x ∶ Σ−2CP∞ ≃ Σ−2MU(1)→MU
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This is, in fact, the universal complex orientation. One can show that MU has a canonical

ring structure, and for any homotopy commutative ring spectrum E, there is a bijection

{Ring maps MU → E} ≅ {Complex orientations of E}

given by pushing forward x along a ring map. See [58, Lecture 6] for more details.

Example 2.2.7. Any homotopy commutative ring spectrum E with the property that

E2k+1 = 0 for all k ∈ Z - i.e. that E is even - is complex orientable. In this case, the

groups Hp(CP∞;Eq) vanish unless p and q are both even; the Atiyah-Hirzebruch spectral

sequence computing E∗CP∞ thus collapses on the E2 page by a checkerboard phenomenon,

and a generator of H2(CP∞;E0) lifts to a complex orientation of E.

The strict isomorphisms given by Lemma 2.2.4 are more useful than they may seem at

first glance. The construction GE brings complex-oriented cohomology theories E into the

theory of formal groups, but the isomorphisms of Lemma 2.2.4 introduce automorphism data

for formal groups, and they are responsible for the connection to stacks and, in particular,

MFG. This part of the story begins with the following.

Proposition 2.2.8. Let E be complex-orientable. For any complex orientation

x ∶MU → E

of E, MU ∧E has two canonical complex orientations given by

ηL ∶MU ≃ S0 ∧MU
ηMU∧xÐÐÐ→MU ∧E

and

ηR ∶MU ≃MU ∧ S0 id∧ηEÐÐÐ→MU ∧E

Let f(x) = x + ∑
j≥1
bjxj+1 be the strict isomorphism

f ∶ η∗LF → η∗RF
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furnished by Lemma 2.2.4, where F is the formal group law over MU∗ as in Example 2.2.6.

Then the map

E∗[bi]→MU∗E

is an isomorphism of graded E∗-algebras, where ∣bi∣ = 2i.

Proof. We refer the reader to [77, Lemma 4.1.7] for a proof. See also [58, Lecture 7].

Definition 2.2.9. Let E be a homotopy commutative ring spectrum with the property that

the map E∗ → E∗E induced by

E ≃ S0 ∧E → E ∧E

is flat. We say in this case that E is Adams flat.

Lemma 2.2.10. Let E be an Adams flat ring spectrum. The pair (E∗,E∗E) has a canonical

structure of a graded Hopf algebroid, and for any spectrum X, the E∗-module E∗X has a

canonical structure of a graded left (E∗,E∗E)-comodule.

Proof. The maps

ηL ∶ E ≃ S0 ∧E → E ∧E

and

ηR ∶ E ≃ E ∧ S0 → E ∧E

induce the maps of the same name in the Hopf algebroid. The multiplication map E∧E → E

induces the identity map ε, the swap map E ∧E τÐ→ E ∧E induces the inversion c, and the

map

E ∧E ≃ E ∧ S0 ≃ E → E ∧E ∧E

induces the composition map ∆. For ∆, note that since E∗E is flat over E∗, one has a

Kunneth isomorphism

π∗(E ∧E ∧E) ≅ E∗E ⊗E∗ E∗E
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The comodule structure on E∗X is induced by the map

E ∧X ≃ E ∧ S0 ∧X → E ∧E ∧X

using flatness again for the isomorphism

π∗(E ∧E ∧X) ≅ E∗E ⊗E∗ E∗X

Theorem 2.2.11. (Quillen) The complex orientation of MU given by Example 2.2.6 - along

with the isomorphism of Proposition 2.2.8 - determines an isomorphism of graded Hopf

algebroids

(MU∗,MU∗MU) ≅ (L,L[b1, b2, . . .])

where the latter is as in Theorem 2.1.60. In particular, one has an equivalence of Gm-stacks

M(MU∗,MU∗MU) ≃MFG(1)

and hence an equivalence of stacks

M(MU∗,MU∗MU)/Gm ≃MFG

Proof. We refer the reader to [76]. See also [58, Lecture 10].

2.2.2 FX and the Landweber exact functor theorem

Quillen’s theorem along with Lemma 2.2.10 refines the complex bordism homology theory

MU∗(−) to a functor

F(−) ∶ Sp→Comod(MU∗,MU∗MU) ≃QCoh(MFG(1))

where the latter equivalence is Theorem 2.1.54. Since the isomorphism of Quillen’s theorem

respects gradings, this equivalence restricts to one of Gm-equivariant objects, i.e. a graded
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(MU∗,MU∗MU)-comodule - such as MU∗X - is the same thing as a Gm-equivariant qua-

sicoherent sheaf onMFG(1). In this section, we will establish some basic properties of this

functor, and we show in the next section that this functor retains a surprising amount of

information about stable homotopy theory. Our first result ties this functor to computations

in complex bordism:

Proposition 2.2.12. There is an isomorphism

Exts,t
(MU∗,MU∗MU)

(MU∗,MU∗X) ≅Hs(MFG(1);FX)t

from the E2-page of the Adams-Novikov SS of X to the cohomology of the sheaf FX on

the stack MFG(1). The internal grading t on the latter comes from the fact that FX is a

Gm-equivariant quasicoherent sheaf on MFG(1).

Proof. This follows immediately from the equivalence of Theorem 2.1.54.

It is natural to ask whether a formal group law over a ring R gives rise to a complex-

oriented cohomology theory, and, in particular, if the functor F(−) admits a section. This

question was the motivation for Landweber’s exact functor theorem 2.1.80, and one has the

following.

Lemma 2.2.13. Suppose that L FÐ→ R∗ is a map of graded rings classifying a formal group

law F with the property that, for all primes p, the sequence (p, v1, v2, . . .) is a regular sequence

in the ring R∗. Then the functor h∗(−)

X ↦MU∗(X)⊗MU∗ R∗

is represented by a complex-oriented cohomology theory ER with GER ≅ F .

Proof. It suffices to show the above functor h∗(−) sends cofiber sequences X → Y → Z to

exact sequences

h∗(X)→ h∗(Y )→ h∗(Z)
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as then we may apply Brown representability. Such a sequence determines an exact sequence

FX → FY → FZ

in QCoh(MFG(1)), and since

Spec(R∗)
FÐ→MFG(1)

is flat by Proposition 2.1.80, the sequence of R∗-modules

F ∗FX → F ∗FY → F ∗FZ

is exact, and this is isomorphic to the sequence

h∗(X)→ h∗(Y )→ h∗(Z)

Remark 2.2.14. It is often the case that one has a commutative ring R equipped with a formal

group law F to which they would like to apply the lemma, but R has no natural grading

for which L
FÐ→ R is a map of graded rings. One fixes this by working in an even-periodic

setting. Namely, one replaces MU with the ring spectrum

MUP = ⋁
n∈Z

Σ2n

which has the property that π0MUP = π∗MU carries the universal formal group law. For R

and F as above such that, for all primes p, the sequence (p, v1, v2, . . .) is a regular sequence

in the ring R, the functor

X ↦ (MUP )0(X)⊗MUP0 R

is representable by a complex-oriented cohomology theory ER with π∗(ER) ≅ R[u±] where u

has degree 2. The inclusion R → R[u±] allows us to push forward F , and we then define a

formal group law over R[u±] by

(u−1

F )(x, y) = u−1F (ux,uy)

and one has an isomorphism GER ≅ u−1
F .

74



Definition 2.2.15. For E a complex-oriented cohomology theory, if GE satisfies the hy-

potheses of the Landweber exact functor theorem, we say E is Landweber exact.

Remark 2.2.16. If E is landweber exact, then one has isomorphisms

E∗(X) ≅MU∗(X)⊗MU∗ E∗

for any spectrum X. One may use this to show that there is a pullback of stacks

Spec(E∗F ) Spec(E∗)

Spec(F∗) MFG(1)

GE
GF

whenever E and F are Landweber exact. Hopkins’ cites this fact as one that piqued his in-

terest in bringing stacks into the world of chromatic homotopy. We return to a generalization

of this fact in the final chapter, see Proposition 6.1.6.

Example 2.2.17. As discussed in our analysis of (MFG)(p), the formal group laws over

the rings Z(p)[v1, v2, . . .] and Z(p)[v1, . . . , vn−1, v±n] satisfy the hypotheses of the Landweber

exact functor theorem. By the lemma above, we therefore have associated complex oriented

cohomology theories, which are called BP and E(n), the Brown-Peterson spectrum and the

n-th Johnson-Wilson theory.

Example 2.2.18. There is a completed variant of E(n) that is of central importance to

chromatic homotopy, known as Morava E-theory. For k a perfect field of characteristic p,

there is an (ungraded) ring

W (k)[[u1, . . . , un−1]]

that carries the universal deformation of a given formal group law G of height n over k,

where W (k) denotes the Witt vectors of k. The sequence (p, v1, . . .) is regular in this ring,

and hence we have an even-periodic Landweber exact theory En such that

π∗(En) =W (k)[[u1, . . . , un−1]][u±]
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This is known as the Morava E-theory associated to G. Goerss, Hopkins, and Miller showed

that En admits the structure of an E∞-ring and that the automorphism group of the for-

mal group G acts on En in the category of E∞-rings (see [22]). This group action gives

equivariance a crucial role in chromatic homotopy, and we will return to this in the next

chapter.

The Landweber exact functor theorem allows us to lift certain sheaves along the functor

F(−), and we would like to lift certain geometric constructions, such as restriction to an open

substack ofMFG, along this functor. This brings us to Bousfield localization.

Definition 2.2.19. If E is a spectrum, we let ZE denote the category of E-acyclics : the full

subcategory of Sp consisting of all Z such that E ∧Z is contractible. We let LE denote the

category of E-locals : the full subcategory of Sp consisting of all X such that MapSp(Z,X) ≃

∗ for all Z ∈ ZE. We say E,F ∈ Sp are Bousfield equivalent (denoted ⟨E⟩ = ⟨F ⟩) if ZE = ZF .

Proposition 2.2.20. (Bousfield) For any spectrum E there is a cofiber sequence of spectra

ZE(X)→X → LE(X)

such that ZE(X) ∈ ZE, LE(X) ∈ LE, and the cofiber sequence is natural in X and unique up

to homotopy with respect to these properties.

Proof. We refer the reader to [15]. See also [58, Lecture 20].

We fix a prime p and focus in particular on the Bousfield localization functor LE(n)(−) on

the category of p-local spectra. The following proposition makes precise how LE(n) lifts the

localization functor on QCoh((MFG)(p)) given by restriction to the open substackM≤n
FG.

Proposition 2.2.21. Fix a prime p and let M≤n
FG(1) be defined by the pullback

M≤n
FG(1) MFG(1)

M≤n
FG MFG

ιn

We have the following:
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1. Z ∈ ZE if and only if ι∗nFZ = 0

2. For any p-local spectrum X, the map X → LE(n)X induces an isomorphism

ι∗nFX → ι∗nFLE(n)X

Proof. Claims (1) and (2) are equivalent by the long exact sequence associated to ZE(n)(X)→

X → LE(n)(X). Proposition 2.1.81 - along with the Landweber exactness of E(n) - implies

that one has equivalence of stacks

M(E(n)∗,E(n)∗E(n)) ≃M≤n
FG(1)

M(E(n)∗,E(n)∗E(n))/Gm ≃M≤n
FG

In particular, since Spec(E(n)∗)→MFG(1) is a faithfully flat cover, ι∗nFZ = 0 if and only if

the pullback ι∗nFZ to Spec(E(n)∗) is zero, but by Landweber exactness, this is the E(n)∗-

module E(n)∗Z.

Remark 2.2.22. The proof of the above proposition used only two facts: E(n) is Landweber

exact, and Spec(E(n)∗)→M≤n
FG is a faithfully flat cover. It is not hard to show the same is

true for any Morava E-theory of height n, hence we have Bousfield equivalences

⟨E(n)⟩ = ⟨En⟩

2.2.3 The Ravenel conjectures

We have shown already that many of the structural properties of the stack MFG may

be lifted to the category Sp along the functor F(−). For instance, Proposition 2.2.21 shows

that restriction to the open substacksM≤n
FG lifts to the Bousfield localization functor

LE(n) ∶ Sp→ LE(n)

In his landmark paper [78], Ravenel made a series of conjectures about how strongly the

rigidity of MFG is reflected in Sp. All but one of these (the telescope conjecture) was
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proven by Hopkins and his collaborators, and we refer the reader to [79] for an excellent

self-contained account of these results. We collect a few of these results in this section and

explain how each fits into our stacks picture of chromatic homotopy.

Theorem 2.2.23. (The smash product theorem, Hopkins-Ravenel) The Bousfield localization

functor LE(n)(−) is smashing. That is, for any spectrum X, the map

LE(n)(S0) ∧X → LE(n)(S0) ∧LE(n)(X)→ LE(n)(X)

is an equivalence.

The smash product theorem tells us that, on the category Sp, LE(n)(−) behaves like the

Zariski localization

ι∗n(−) ≅ OM≤n
FG

⊗OMFG
(−)

as LE(n) is simply given by smashing with LE(n)(S0).

Theorem 2.2.24. (The chromatic convergence theorem, Hopkins-Ravenel) Let X be a p-

local finite spectrum, then there is an equivalence

X ≃ lim←Ð
n

LE(n)(X)

The chromatic convergence theorem states that finite X may be recovered from its local-

izations LE(n)(X). This reflects a geometric phenomenon in (MFG)(p): the filtration

M≤0
FG ⊂M≤1

FG ⊂ ⋯ ⊂ (MFG)(p)

is not exhaustive because of the generic point at ∞ given by Ĝa, but it is exhaustive from

the point of view of finitely presented quasicoherent sheaves, as any such sheaf is determined

by its restrictions to eachM≤n
FG. See [27, Section 8] for more details.

For the next result in this series, we need some basic definitions in tensor-triangular ge-

ometry, and we follow closely the paper [4]. In particular, suppose T is a tensor-triangulated

category, such as Sp with tensor product given by ∧, the smash product of spectra.
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Definition 2.2.25. A (full) subcategory J ⊂ T is said to be thick if

1. J is closed under suspensions, desuspensions, and retracts

2. If X,Y ∈ J , then for any map f ∶X → Y , the cofiber of f is also in J

We say that J is a thick tensor ideal if, in addition, X ∈ J and Y ∈ T implies that X⊗Y ∈ J .

Finally J is said to be prime if

X ⊗ Y ∈ J Ô⇒ X ∈ J or Y ∈ J

When T is an essentially small category, such as Spω (the category of finite spectra), we

have the following powerful invariant:

Definition 2.2.26. (Balmer) For an essentially small triangulated category T , we define a

topological space Spc(T ) called the Balmer spectrum of T as follows:

• As a set Spc(T ) = {J : J is a prime thick tensor ideal of T }.

• For a family of objects S ⊂ T , we define the set

Z(S) ∶= {J ∈ Spc(T ) : S ∩J = ∅}

The sets Z(S) define the closed subsets of a topology on Spc(T ).

Theorem 2.2.27. (The thick subcategory theorem, Hopkins-Smith) As a set,

Spc(Spω(p)) = {C≥n}n≥0

where C≥n is the thick subcategory of finite E(n − 1)-acyclics, i.e.

C≥n = ZE(n−1) ∩ Spω(p)

The map

Spc(Spω(p))→ ∣(MFG)(p)∣ ≅ Z≥0 ∪ {∞}

sending C≥n to n is a homeomorphism onto the subset Z≥0.
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The thick subcategory theorem is a spectacular lift of the homeomorphism of Theorem

2.1.86. It allows us to treat the category of Sp much in the way we treat a scheme, and in

particular it allows one to reduce claims about finite spectra to a single generic spectrum.

Theorem 2.2.28. (The nilpotence theorem, Devinatz-Hopkins-Smith) Let R be a ring spec-

trum. If x ∈ π∗R is in the kernel of the map

π∗(R) ≅ π∗(S0 ∧R)→ π∗(MU ∧R) =MU∗R

then x is nilpotent in π∗R.

The nilpotence theorem is the central result used to establish the Ravenel conjectures.

The main ingredient of the proof of the nilpotence theorem is a filtration of MU introduced

by Ravenel called the X(n)’s. We return to these in the final chapter.

80



Chapter 3

REAL-ORIENTED HOMOTOPY AND THE SLICE FILTRATION

In this chapter, we review some of the basics of equivariant stable homotopy and Real-

oriented homotopy, collecting what we need for our results in the remaining chapters. In

Section 3.1 we discuss basics regarding stabilization and genuine G-spectra. In Section 3.2,

we discuss Real orientations and show how many of the features of chromatic homotopy and

complex orientations are available in this context. In Section 3.3, we introduce the slice

filtration of G-spectra and discuss the HHR slice theorem. Finally in Section 3.4, we discuss

the Segal conjecture for G = Cp and show that it can be recast as a completion statement on

the level of Cp-spectra. In all that follows, G is a finite group.

3.1 G-spaces and G-spectra

In this section, we define the homotopy theories of G-spaces and G-spectra, and discuss

various properties. We begin in Section 3.1.1 by discussing stabilization in a G-equivariant

context, defining the category of genuine G-spectra. In Section 3.1.2, we discuss various

change of group functors in equivariant homotopy and give a description of Cp-spectra in

terms of pullback squares.

3.1.1 G-spaces, Mackey functors, and stabilization

Definition 3.1.1. A G-space is a topological space X equipped with a continuous G-action

G ×X → X. A map of G-spaces is a G-equivariant continuous map. A pointed G-space is a

G-space X with a chosen point x ∈XG, and a map of pointed G-spaces is a map of G-spaces

that is pointed. A weak equivalence of pointed G-spaces is a map f ∶ X → Y of G-spaces

such that fH ∶XH → Y H is a weak equivalence of pointed spaces for all subgroups H ⊂ G.
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There is a natural model category structure on TopG∗ , the category of G-spaces in which

the weak equivalences are exactly the ones in the above definition (see [29]), and we denote

by the same name TopG∗ the associated ∞-category given by taking the homotopy coherent

nerve of the category of bifibrant objects therein. We define equivariant homotopy groups

in the expected way; for X a G-space,

πGi (X) ∶= [Si,X]G

where [−,−]G denotes Hom in the homotopy category of TopG∗ , and Si denotes the i sphere

with the trivial G-action. πi is a group for i ≥ 1 and an abelian group for i ≥ 2. Since Si has

the trivial action, any map Si →X must land in XG, and we have

πGi (X) ≅ πi(XG)

There is, however, more structure available on the groups πHi (X) ∶= πi(XH). In particular,

for any subgroup H ⊂ G, the fixed point-set XH has a residual action of the Weyl group

WG(H) = NG(H)/H, where NG(H) is the normalizer of H in G. For any K ⊂ H ⊂ G,

there is also an inclusion XH → XK . For i ≥ 2, this gives the collection of abelian groups

{πHi (X)}H⊂G the structure of a coefficient system:

Definition 3.1.2. LetOG denote the orbit category ofG: the full subcategory of the category

of G-sets and equivariant maps spanned by the orbits G/H for H a subgroup of G. A G-

coefficient system is a functor OopG →Ab.

The coefficient system point-of-view actually gives rise to a useful model of the homotopy

theory of G-spaces, according to the following theorem of Elmendorf.

Proposition 3.1.3. (Elmendorf) There is an equivalence of ∞-categories

TopG∗ ≃ Fun(OopG ,Top∗)

The passage fromG-spaces toG-spectra is substantially more subtle than in the nonequiv-

ariant context. The correct notion of G-spectrum - i.e. a genuine G-spectrum - ought to
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give a representing object for a classical G-equivariant cohomology theory (see [20, Definition

3.3.3]). A G-equivariant cohomology theory E has groups EV (X) graded on V ∈ RO(G)

- the real representation ring - for any G-space X, along with (natural) twisted suspension

isomorphisms

σV,W ∶ EV (X) ≅Ð→ EV +W (SW ∧X)

In addition the G-coefficient system

G/H ↦ EV (G/H ×X)

possesses additional transfer maps, i.e. it extends to a G-Mackey functor, which we define

below (see also [39, Section 3.1]).

Definition 3.1.4. A G-Mackey functor consists of a pair M = (M∗,M
∗) of functors from

the category of finite G-sets to the category of abelian groups. The two functors have the

same object function (denoted M) and take disjoint unions to direct sums. The functor M∗

is covariant, while M∗ is contravariant, and together they take a pullback diagram of finite

G-sets
S A

T B

δ

γ α

β

to a commutative square

M(S) M(A)

M(T ) M(B)

M∗(δ)

M∗(γ)

M∗(β)

M∗(α)

The contravariant maps M∗(α) are called the restriction maps, and the covariant maps

M∗(β) the transfer maps.

Example 3.1.5. 1. We let Z be the Mackey functor given by Z(G/H) = Z for all H, the

restriction maps Z(G/H)→ Z(G/K) are the identity, and the transfer maps Z(G/K)→

Z(G/H) forK ⊂H are multiplication by the index [H ∶K]. All the Weyl group actions

are trivial.
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2. We let A be the Burnside Mackey functor given by A(G/H) = A(H), where A(H) is

the Burnside ring of H. This is the set of isomorphism classes of finite G-sets, where

addition is given by disjoint union, and multiplication is given by Cartesian product.

The restriction maps are given by restriction of G-sets, the transfer maps are given by

induction of G-sets, and the Weyl actions are given as follows: for X a finite H-set

and g ∈WG(H), one sets gX to be the H-set X with action h ⋅ x = ghg−1x.

Mackey functors may also be defined as additive functors from BG, the Burnside category

of G, to Ab; we refer the reader to [39, Section 3.1] for more details. The following result

implies that the condition of having twisted suspension isomorphisms and the condition of

extending to a Mackey functor are actually equivalent, and we comment below on why this

is the case in Remark 3.1.7.

Proposition 3.1.6. A Z-graded cohomology theory on TopG with coefficients in a coefficient

system M extends to an RO(G)-graded cohomology theory if and only if M extends to a

Mackey functor.

Proof. See [20, Corollary 3.4.5].

Remark 3.1.7. The condition of G-equivariant cohomology theories extending to an RO(G)-

graded cohomology theory - i.e. possessing twisted suspension isomorphisms - is equivalent

to the representation spheres being invertible in the category of G-spectra. This condition

gives rise to a Mackey functor because one then has a stable transfer map Σ∞
+ G/H → Σ∞

+ G/K

for K ⊂H via the Pontryagin-Thom construction. For example, let G =H = C2 and K = {e},

then the map in question would be a stable map

S0 → C2+

(Notice there is no such nontrivial unstable map that is C2-equivariant). In the presence of

a suspension isomorphism for σ, the sign representation of C2, it would suffice to suspend
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by Sσ and thus construct a map

Sσ → C2+ ∧ Sσ ≅ C2+ ∧ S1

using the equivariant homeomorphism C2+ ∧ S1 → C2+ ∧ Sσ that sends

(g, x)↦ (g, gx)

To do this, embed the C2-set C2 into σ as the subset {±1}. Taking small neighborhoods

around 1 and −1 gives an equivariant open embedding

C2 ×D1 ↪ σ

The Pontryagin-Thom construction is the observation that one-point compactification on

locally compact spaces is a contravariant functor with respect to open inclusions, and this

gives our map

Sσ → C2+ ∧ S1

With this motivation in mind, we thus have two ways of passing from G-spaces to G-

spectra, by inverting the representation spheres of G or by extending to Mackey functors; the

former approach is taken by Mandell and May in their stable model structure on orthogonal

G-spectra [63]. The latter approach is taken by Guillou-May [30] and Barwick in [10].

Barwick constructs a quasicategory of spectral mackey functors that is equivalent to the

homotopy coherent nerve of bifibrant objects in the Mandell-May category. We denote

either of these equivalent ∞-categories by SpG, the category of genuine G-spectra.

Example 3.1.8. Any Mackey functorM determines an Eilenberg-Maclane G-spectrumHM

with the property that

πi(HM) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M i = 0

0 else

by constructing the spectral Mackey functor

(HM)(G/H) =H(M(G/H))
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The homotopy Mackey functors πi(−) may be defined more generally even for V ∈ RO(G)

as follows:

Definition 3.1.9. For X a G-spectrum, we define the Mackey functor πV (X) by

πV (X)(G/H) = [G/H+ ∧ SV ,X]G

where [−,−]G denotes Hom in the homotopy category of SpG.

Remark 3.1.10. The functoriality of the above construction comes from the following result

of Segal: the functor BG → SpG sending

G/H ↦ Σ∞
+ G/H

gives an equivalence of categories from the Burnside category BG onto the full subcategory

of SpG spanned by the suspension spectra of finite G-sets. Note in particular, this gives an

isomorphism

π0(S0) ≅ A

where A is the Burnside Mackey functor for G as in Example 3.1.5.

Remark 3.1.11. The category SpG of genuine G-spectra is not the only reasonable homotopy

theory of G-spectra. One could, for example, take the ∞-category Fun(BG,Sp) of G-

objects in Sp, or by analogy with Elmendorf’s theorem, the ∞-category Fun(OopG ,Sp) of

G-coefficient systems of spaces. In the former case, one has the category of so-called Borel

G-spectra, and in the latter case, one has so-called naive G-spectra. We will never make use

of naive G-spectra, but we will frequently use Borel G-spectra for the following reason: the

forgetful functor

SpG
evG/eÐÐÐ→ Fun(BG,Sp)

admits fully faithful left and right adjoints, denoted EG+ ∧ (−) and F (EG+,−) respectively.

The notation is due to the fact that EG+ ∧ (−) is an equivalence onto the full subcategory
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of SpG given by those X such that

EG+ ∧X →X

is an equivalence, where EG is a free contractible G-space, and F (EG+,−) is an equivalence

onto the full subcategory of SpG given by those X such that

X → F (EG+,X)

is an equivalence. The former subcategory is called the category of free G-spectra, and the

latter is called the category of cofree G-spectra. Cofree G-spectra will play an important

role in many of our results.

Example 3.1.12. Recall from Example 2.2.18 that for any formal group law G of height n

over a perfect field k, there is an associated Landweber exact E∞-ring spectrum En, with

an action of the automorphism group of G by E∞-ring maps, by the Goerss-Hopkins-Miller

theorem. For any finite subgroup G of the automorphism group of G, we therefore have a

lift

En ∈ Fun(BG,Sp)

We often regard En as a cofree genuine G-spectrum by applying the right adjoint F (EG+,−)

of the previous remark.

3.1.2 Change of group functors and the Tate square

We finish this section by describing various change of group functors appearing in equiv-

ariant stable homotopy, focusing on the geometric fixed point functors in particular to show

that when G = Cp, it is possible to present the ∞-category SpG as a homotopy pullback

via the Tate square. We refer the reader to [39] for more details on the construction of the

various change of group functors given below. See also [7, Section 2] for a nice account of

many of these functors.
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Definition 3.1.13. Let H ⊂ G be a subgroup. One has the following change of group

functors

1. The restriction functor iGH ∶ SpG → SpH

2. The induction functor G+ ∧H (−) ∶ SpH → SpG, the left adjoint to iGH .

3. For any group homomorphism f ∶ G→ G′, we have the pullback functor

f∗ ∶ SpG′ → SpG

4. The inflation functor i∗ ∶ Sp→ SpG that sends a spectrum to a G-spectrum with trivial

action.

5. The genuine fixed points functor (−)H ∶ SpG → Sp is given by evaluating a spectral

Mackey functor X at the G-set G/H. Since X(G/H) has a residual action of WG(H)

one may regard this functor as a functor

SpG → SpWG(H)

One has by definition that πHi (X) ≅ πi(XH) and thus the genuine fixed point functors

(−)H are jointly conservative as H ranges through all subgroups of G. The functor

(−)G is right adjoint to the inflation functor, and (−)G is also a left adjoint. Inflation

has no left adjoint.

6. The geometric fixed points functor ΦH ∶ SpG → Sp is the functor sending X ∈ SpG

X ↦ (ẼF<H ∧X)H

where EF<H+ is a universal space for the family of subgroups ofG that are subconjugate

to a proper subgroup of H, and ẼF<H ∧X is defined by the cofiber sequence

EF<H+ → S0 → ẼF<H
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(for more on families and universal spaces, see Section 4.2.1 below). Since (ẼF<H∧X)H

has a residual action of WG(H) one may regard this functor as a functor

SpG → SpWG(H)

The functors ΦH(−) are jointly conservative as H ranges through all subgroups of G.

The functor ΦG(−) may be described from the perspective of spectral mackey functors:

let C ⊂ SpG be the full subcategory spanned by those spectral Mackey functors X with

the property that X(G/H) ≃ ∗ for all proper subgroups H. The inclusion of C admits

a left adjoint, and it is not hard to see that C ≃ Sp. Under this identification, the left

adjoint is the functor ΦG(−).

7. For X ∈ SpG, we define the homotopy fixed point spectrum XhH as

(F (EG+,X))H

As before, one may regard this as a genuine WG(H)-spectrum.

8. For X ∈ SpG, we define the Tate spectrum X tH as

(ẼG ∧ F (EG+,X))H

As before, one may regard this as a genuine WG(H)-spectrum.

9. The norm functor NG
H ∶ SpH → SpG is a tensor-induction functor. It is symmetric

monoidal, it commutes with sifted (and therefore filtered) colimits, and thus it is

characterized by its effect on suspension spectra, where we have

NG
H(Σ∞

+ X) ≃ Σ∞
+ FH(G,X)

where FH(G,−) ∶ TopH → TopG is the right adjoint to the restriction functor. Note,

in particular, if V ∈ RO(G), one has

NG
H(SV ) ≃ SIndGH(V )
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Remark 3.1.14. We pause to say more about the norm in two simple cases. If X ∈ Sp, then

NC2
e X is a C2-spectrum whose underlying Borel C2-spectrum is X ∧X with the swap action.

If X ∈ SpC2 , then NC4

C2
X is a C4-spectrum whose underlying Borel C4-spectrum is given by

X∧X with action given heuristically by γ(a∧b) = b∧a, where γ is a generator of C4, and (−)

is the C2-action on X. This describes the Borel equivariant spectra, and it is more difficult

to describe the genuine equivariant spectra, but for NCp
e , this can be done rather explicitly

using the Tate diagonal: we refer the reader to [74] for more details.

Definition 3.1.15. Let X ∈ SpG.

1. The cofiber sequence

EG+ ∧X →X → ẼG ∧X

is called the isotropy separation sequence of X.

2. The commutative diagram

X ẼG ∧X

F (EG+,X) ẼG ∧ F (EG+,X)

is called the Tate square of X

Lemma 3.1.16. For any X ∈ SpG, the Tate square of X is a homotopy pullback in SpG.

Proof. We will see in the next chapter that the functors F (EG+,−) and ẼG ∧ (−) may be

described as the Bousfield localization functors LG+(−) and LẼG(−). The result then follows

from a general argument for Bousfield localizations, which one may find in Bauer’s lecture

in [22]. One needs only to observe in this case that

LG+(LẼG(−)) ≃ ∗

because

F (EG+, ẼG ∧X) ≃ F (ẼG ∧EG+ẼG,X) ≃ ∗

as ẼG ∧EG+ ≃ ∗.
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Example 3.1.17. Let Y be a genuine Cp-spectrum. Applying (−)Cp to the Tate square for

Y , one has a homotopy pullback

Y Cp ΦCp(Y )

Y hCp Y tCp

When X ∈ Sp and Y = NCp
e X, one has a pullback square

(NCp
e X)Cp X

(NCp
e X)hCp (NCp

e X)tCp

from the identification ΦCp ○NCp
e ≃ id. The map X → (NCp

e X)tCp is called the Tate diagonal

of X.

Remark 3.1.18. The Cp-Tate squares of the lemma above in fact characterize the homotopy

theory of genuine Cp-spectra, in the sense that there is a homotopy pullback of ∞-categories

SpCp Fun(∆1,Sp)

Fun(BCp,Sp) Sp

φ

i
Cp
e

ev1

(−)tCp

where iCpe sends a genuine Cp-spectrum X to its underlying Borel Cp-spectrum, and φ sends

X to the morphism of spectra

ΦCpX →X tCp

In particular, the data of a genuine Cp-spectrum is the data of a Borel Cp-spectrum X, a

spectrum Y , and a map of spectra

Y →X tCp

See [26] for more details.
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3.2 Real orientations and Real bordism theory

Many of the standard complex-oriented cohomology theories - e.g. MU , BP , E(n), K(n)

- admit C2-actions via complex conjugation, resulting in lifts of these spectra to genuine C2-

spectra. Moreover, CP∞ - with its complex conjugation action - is an abelian group object

equivariantly, i.e. in TopC2
∗ . Many of the same conditions are in place to use these objects to

have a C2-equivariant version of chromatic homotopy, which we call Real-oriented homotopy

theory. This theory was set in motion by Hu and Kriz in [48], and we also recommend [40]

as an excellent source. We collect what we need from the theory in this section.

Remark 3.2.1. For a G-spectrum, we use the notation

π☀(X) = ⊕
V ∈RO(G)

πV (X)

and we often use the notation πG
☀
X and πGVX or just π☀X and πVX as shorthand for

π☀(X)(G/G) and πV (X)(G/G). Similarly for homology and cohomology groups E☀X

and E☀X.

Note that when G = C2, the real representation ring RO(C2) is free abelian on the

representations 1 and σ, the trivial and sign characters of C2. Note also that, as a C2-

representation via complex conjugation, C ≅ 1 + σ =∶ ρ.

Definition 3.2.2. Let E be a homotopy commutative ring C2-spectrum. A Real orientation

of E is a class x ∈ Ẽρ(CP∞) such that the restriction

Ẽρ(CP∞)→ Ẽρ(CP1) = Ẽρ(Sρ) ≅ π0E

sends x to 1. We say E is Real-orientable if there exists a Real orientation of E.

All of the structure on the ind-space

{CP1 → CP2 → CP3 → ⋯}

we used to define the formal group GE for E complex-orientation is C2-equivariant with re-

spect to complex conjugation on the spaces CPn. It follows that the ind-system {Spec(E☀CPn)}
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forms some kind of formal group object; it remains to show that it can be identified with

some nice smooth formal group scheme when E is Real-orientable. In fact, the situation is ex-

actly as in the nonequivariant case, but we need a modified version of the Atiyah-Hirzebruch

spectral sequence.

Definition 3.2.3. A Real CW-complex is a C2-space X with a filtration

X(0) ⊂X(1) ⊂X(2) ⊂ ⋯ ⊂X

such that

1. X ≅ colimX(n)

2. There is a pushout square of C2-spaces

∐Ik
S2k−1 X(k−1)

∐Ik
D2k X(k)

where I is some indexing set, and S2k−1 and D2k are C2-spaces via complex conjugation

coming from their embedding into Ck.

Example 3.2.4. The C2-spaces CPn, CP∞, BU(n), andMU(n) are all Real CW complexes

via their Schubert cell structures.

If E is any C2-spectrum, and X is a Real CW complex, one gets an Atiyah-Hirzebruch

type spectral sequence associated to the Real filtration of X with signature

Ep,V
1 = Epρ2+V (X(p),X(p−1)) Ô⇒ Epρ2+V (X)

One has isomorphisms

Epρ2+V (X(p),X(p−1)) ≅⊕
Ip

EV (∗)
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On the underlying space, i∗eX, the Real CW structure forgets to an ordinary CW structure

consisting of only even cells. The d1-differentials in the above spectral sequence correspond

to the ordinary cellular boundary maps for i∗eX, and we find that

Ep,V
2 ≅H2p(i∗eX;EV (∗)) Ô⇒ Epρ2+V (X)

(see also [48, 2.24]). Using this spectral sequence and the same arguments used in Proposition

2.2.2, we have the following.

Proposition 3.2.5. A Real orientation x of E determines an isomorphism of RO(C2)-

graded rings

E☀(CP∞) ≅ E☀[[x]]

In particular, x determines a formal group law over the ring

⊕
∗

E∗ρ ⊂ E☀

Example 3.2.6. (Real bordism theory) The complex-oriented cohomology theory MU ad-

mits a complex conjugation action by C2. In particular one has the C2-spaces MUR(n) -

given by the space MU(n) with its complex conjugation action - and the structure maps

Σ2MU(n − 1)→MU(n)

lift to C2-equivariant maps

ΣρMUR(n − 1)→MUR(n)

and we define

MUR ∶= colimn Σ−nρMUR(n)

As before the zero section of E1 → CP∞ is C2-equivariant and defines a Real orientation of

MUR, which is the universal Real orientation, so that

{C2-ring maps MUR → E} ≅ {Real orientations of E}
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Remark 3.2.7. There is a somewhat surprising consequence of this bijection. One can show

- just as we did nonequivariantly - that the set of Real orientations of E is in bijection with

the set of coordinates on the formal group GE over Spec(E∗ρ) that respect the 1-jet. We

will see that the restriction map

MU∗ρ →MU2∗ ≅ L

is an isomorphism, so this identifies the set {C2-ring maps MUR → E} with a subset of

{Ring maps π∗ρMUR → π∗ρE}

This is surprising, as a ring map MUR → E determines a ring map

π☀MUR → π☀E

and π☀MUR has a huge amount of nonzero classes outside of these degrees.

We have also the following expected analogue of Proposition 2.2.8.

Proposition 3.2.8. Let E be Real-orientable. For any Real orientation

x ∶MUR → E

of E, MUR ∧E has two canonical Real orientations given by

ηL ∶MUR ≃ S0 ∧MUR
ηMUR∧xÐÐÐÐ→MUR ∧E

and

ηR ∶MUR ≃MUR ∧ S0 id∧ηEÐÐÐ→MUR ∧E

Let f(x) = x + ∑
j≥1
bjxj+1 be the strict isomorphism

f ∶ η∗LF → η∗RF

where F is the formal group law over (MUR)∗ρ as in Example 3.2.6. Then the map

E☀[bi]→MU☀E

is an isomorphism of RO(C2)-graded E☀-algebras, where ∣bi∣ = iρ.
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Proof. The non-equivariant proof works with little change.

We therefore have a Hopf algebroid ((MUR)☀, (MUR ∧MUR)☀), and when restricting

to degrees ☀ = ∗ρ, we have the following

Theorem 3.2.9. (Landweber-Araki, Hill-Meier) There is an isomorphism of graded Hopf

algebroids

((MUR)∗ρ, (MUR ∧MUR)∗ρ) ≅ (MU2∗,MU2∗MU)

Proof. The map MU2∗ → (MUR)∗ρ classifying the formal group law furnished by the Real

orientation ofMUR is an isomorphism (see [53] and [3]). The isomorphism of Hopf algebroids

is [40, Lemma 3.8].

Given this theorem, it should be the case then that for any C2-spectrum X, we have an

associated Gm-equivariant sheaf

FX ∈QCoh(MFG(1))

via the (MUR)∗ρ, (MUR ∧MUR)∗ρ)-comodule (MUR)☀X. However, we have a splitting of

such comodules

(MUR)☀X ≅⊕
i∈Z

(MUR)∗ρ+i(X)

and so (MUR)☀X is properly interpreted as giving us a Z-graded Gm-equivariant quasico-

herent sheaf F iX onMFG(1). See [40, Section 3.2] for more details. There is a version of the

Landweber exact functor theorem in this context, but it is again slightly more complicated

due to the gradings.

Proposition 3.2.10. (Real Landweber exact functor theorem, Hill-Meier) Let E2∗ be a

graded Landweber exact MU2∗-algebra. Then the functor

X ↦ (MUR)☀(X)⊗MU2∗ E2∗

is a C2-equivariant homology theory and is therefore represented by a genuine C2-spectrum.
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Proof. This is [40, Theorem 3.6]. We comment on the gradings: as before we have a decom-

position of MU2∗-modules

(MUR)☀(X) ≅⊕
i∈Z

(MUR)∗ρ+i(X)

and we set

(MUR)☀(X)⊗MU2∗ E2∗ ∶=⊕
i∈Z

((MUR)∗ρ+i(X)⊗MU2∗ E2∗)

Example 3.2.11. Using the above proposition, the MU2∗-algebras BP2∗ and E(n)2∗ (here

E(n) is at the prime 2) give us Real landweber exact C2-spectra BPR and ER(n). These

have the property that iC2
e BPR ≃ BP and iC2

e ER(n) ≃ E(n), i.e. they are genuine C2 lifts of

BP and E(n). We call ER(n) the n-th Real Johnson-Wilson theory.

Example 3.2.12. Fix a perfect field k of characteristic 2 and a formal group G of height n

over k. The associated Morava E-theory En has the property that (En)2∗ is a Landweber

exact MU2∗-algebra. Real Landweber exactness thus provides a lift of En to a genuine C2-

spectrum. On the other hand, we may regard En as a genuine C2-spectrum as in Example

3.1.12. It is a theorem of Hahn and Shi [34] that these two C2-spectra are equivalent, and,

in particular, we have that En is Real-orientable.

3.3 The slice filtration and the HHR slice theorem

In their paper on the Kervaire invariant elements [39], Hill, Hopkins, and Ravenel (HHR)

explored the question of whether a similar chromatic-type theory for C2n-spectra exists, in

particular via the C2n-spectrum NC2n

C2
MUR. They showed that, surprisingly, NC2n

C2
MUR be-

haves very similarly toMUR andMU . To formulate results in this direction, they introduced

the slice filtration of genuine G-spectra. Later, Ullman showed that a slight variant of the

HHR slice filtration had slightly better formal properties and agreed with the HHR filtra-

tion for the C2n-spectrum NC2n

C2
MUR [89]. This filtration is known now as the regular slice

filtration, and we will use the regular slice filtration in all that follows.
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Definition 3.3.1. A slice sphere of dimension n is a G-spectrum of the form

G+ ∧H SmρH

where m∣H ∣ = n, and ρH is the regular representation of H. We say a G-spectrum X is slice

< n if the space

MapSpG(S,X)

is contractible for all slice spheres S of dimension ≥ n. We say a G-spectrum X is slice ≥ n

if X is in the localizing subcategory generated by slice spheres of dimension ≥ n. Here, a

localizing subcategory τ ⊂ SpG is a full subcategory with the following properties:

1. If X ∈ τ and Y ≃X, then Y ∈ τ .

2. If X → Y → Z is a cofiber sequence and X ∈ τ , then Y ∈ τ ⇐⇒ Z ∈ τ .

3. τ is closed under arbitrary coproducts.

Theorem 3.3.2. (HHR) For any G-spectrum, there are functorial cofiber sequences

Pn+1X →X → P nX

such that Pn+1X is slice ≥ n + 1, P nX is slice ≤ n, colimnP nX ≃ ∗, and lim←Ðn
P nX ≃X.

We refer to the tower {P nX} as the slice tower of X, and the fiber

P n
n (X) = fib(P nX → P n−1X)

as the n-th slice of X. The following characterization of the subcategory of slice ≥ n spectra

is very useful.

Proposition 3.3.3. (Hill-Yarnall [42]) A G-spectrum X is slice ≥ n if and only if the

spectrum ΦH(X) is ⌊ n
∣H ∣

⌋-connected for all H ⊂ G.
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Remark 3.3.4. The slice tower of a G-spectrum gives rise to a spectral sequence called the

slice spectral sequence of X, which has signature

Es,t
2 = πGt−sP t

tX Ô⇒ πGt−sX

By applying the functor F (EG+,−) to the slice tower, one has a tower called the homotopy

fixed point tower. The spectral sequence associated to this tower has signature

Es,t
2 =Hs(G;πetX) Ô⇒ πt−s(XhG)

where Hs(G;πetX) is the group cohomology of the G-module

πetX = πt(X)(G/e)

This spectral sequence is called the homotopy fixed point spectral sequence (HFPSS) of X,

and the natural transformation (−)→ F (EG+,−) gives a morphism of spectral sequences

SliceSS(X)→ HFPSS(X)

This map, the slice theorem of HHR, and the theorem of Hahn-Shi (see 3.2.12) have con-

tributed to a significant advancement of our understanding of the HFPSS’s of Morava E-

theories at the prime 2, via pushing forward information in slice spectral sequence along this

map. See for example [11] and [41].

We finish the section by stating the slice theorem of HHR, which we state in the BP

case rather than MU , as is done in [39]. One may refer to [11, Section 1.3] for a similar

presentation of this material. We use the notation used in [39] and define

BP ((C2n)) ∶= NC2n

C2
BPR

The slice theorem is a description of the slice tower of BP ((C2n)), and this begins with a

presentation of the underlying homotopy groups that is amenable to the C2n-action. Let Rn

be the ring πe∗(BP ((C2n))), and note that since

iC2n

C2n−1
BP ((C2n)) ≃ BP ((C2n−1)) ∧BP ((C2n−1))
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the unit map

ηL ∶ BP ((C2n−1)) ≃ S0 ∧BP ((C2n−1)) → BP ((C2n−1)) ∧BP ((C2n−1)) ≃ iC2n

C2n−1
BP ((C2n))

gives an inclusion Rn−1 →Rn. By composing, we have an inclusion

BP∗ ≅R1 ↪Rn

and we let F be the formal group law defined over Rn given by pushing forward the universal

one over BP∗ along this map.

Let γ be a generator of C2n . We have also the complex orientation

BP
FÐ→ iC2n

C2n−1
BP ((C2n))

γÐ→ iC2n

C2n−1
BP ((C2n))

classifying the formal group law we call F γ, and the two differ by a strict isomorphism ψ as

in Lemma 2.2.4, for ψ of the form

ψ(x) = x +F γ ∑
i≥1

F γ

tC2n

i x2i

for classes tC2n

i ∈ πe
2(2i−1)

BP ((C2n)). These tC2n

i ’s generate Rn as a C2n-algebra.

Proposition 3.3.5. The map of C2n-algebras

Z(2)[C2n ⋅ tC2n

1 ,C2n ⋅ tC2n

2 , . . .]→Rn

is an isomorphism, where C2n ⋅ x represents the set

C2n ⋅ x ∶= {x, γ(x), γ2(x), γ3(x), . . . , γ2n−1−1(x)}

and γ2n−1(tC2n

i ) = −tC2n

i .

Proof. See [39, Section 5.4].

It follows from the isomorphism Res ∶ (BPR)∗ρ → (BP )2∗ along with Proposition 3.2.8

that the restriction map

πC2
∗ρBP

((C2n)) → πe2∗BP
((C2n)) =Rn

100



is an isomorphism, and we let ti
C2n denote the unique lift of tC2n

i along this restriction map.

MU ((C2n)) has the structure of a genuine G-commutative ring (see [39, Section 2.3]), and, in

particular, there is a map of C2n-ring spectra

NC2n

C2
iC2n

C2
(MU ((C2n)))→MU ((C2n))

which allows us to define norm classes

NC2n

C2
(ti

C2n) ∈ πC2n

(2i−1)ρ2n
(BP ((C2n)))

where ρ2n is the real regular representation of C2n . Moreover, the map of A∞-rings

S0[ti
C2n ]→ iC2n

C2
BP ((C2n))

norms to an A∞-map

A ∶= NC2n

C2
(S0[ti

C2n ])→ BP ((C2n))

The A∞-ring A is a wedge of slice spheres, and we define the monomial ideal M2d ⊂ A to be

the wedge of all such slice spheres of dimension ≥ 2d, and set

K2d ∶= BP ((C2n)) ∧AM2d

Theorem 3.3.6. (HHR slice theorem) One has equivalences

P 2d+1BP ((C2n)) ≃ P 2dBP ((C2n)) ≃ BP ((C2n))/K2d+2

The odd slices of BP ((C2n)) are contractible, and

P 2d
2dBP

((C2n)) ≃HZ(2) ∧M2d/M2d+2

In particular the slice associated graded of BP ((C2n)) is

HZ(2) ∧N
C2n

C2
(S0[ti

C2n ])

Proof. See [39, Section 6].
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Remark 3.3.7. We explain how one ought to interpret the above theorem. We use the case

n = 2, i.e G = C4, for concreteness. The slice tower for BP ((C4)) forgets to the ordinary

Postnikov tower of iC4
e BP ((C4)), which has P 2d−1

2d−1 ≃ ∗ and

P 2d
2d ≃HZ(2) ∧W2d

where W2d is a wedge of S2d’s over the set of monomials of degree 2d in

πu∗(BP ((C4))) = Z(2)[ti, γ(ti) : i ≥ 1]

The slice tower is an equivariant refinement of this wherein the odd slices vanish, HZ(2) is

replaced withHZ(2), the spheres inW2d corresponding to a summand of the above C4-module

with stabilizer C2 are grouped with their conjugates in a

C4+ ∧C2 S
dρ2 ,

the spheres corresponding to a C4-fixed summand are replaced with S
d
2
ρ4 , and there are no

free summands.

3.4 The Segal conjecture for Cp

The Segal conjecture is a fundamental result in equivariant homotopy that gives a calcu-

lation of the stable cohomotopy of classifying spaces BG for a finite group. In this section,

we use the Cp-Tate square show that the case G = Cp of the Segal conjecture is equivalent

to the claim that the Tate diagonal

S0 → (NCp
e (S0))tCp

is a p-complete equivalence. This result can be found in [14]. We motivate the Segal conjec-

ture by recalling the Atiyah-Segal completion theorem.

Theorem 3.4.1. (Atiyah-Segal) Let KU denote complex topological K-theory, and let G be

a compact Lie group. There is an isomorphism of rings

KU0(BG) ≅ R(G)ˆI
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k a field F1

Finite-dimensional vector space Finite Set

GLn(k) Σn

Finite-dimensional representation of G Finite G-set

R(G) A(G)

Table 3.1: Analogy k ∶ F1

where R(G) is the complex representation ring of G, and I is the augmentation ideal in

R(G).

Proof. See [2].

The Segal conjecture can be thought of as a generalization of the Atiyah-Segal comple-

tion theorem to algebraic K-theory. In particular, one can associate an algebraic K-theory

spectrum K(R) to a commutative ring R and ask if there is a similar description of the

ring K(R)0(BG). This question has been investigated by a number of authors, and similar

completion statements have been proven in some cases; we refer the reader to [68], [87],

and [88] to name just a few. The Segal conjecture gives an answer to this question when R

is F1, the field with one element. There is of course no such field, but there is a convincing

sense in which the sphere spectrum S may be thought of as K(F1).

When one speaks of the field with one element, F1, one is referring to a strong analogy

between the category of finite sets and the category of finite dimensional vector spaces over

a field k, as displayed in Table 3.1. Note here A(G) is the Burnside ring of G.

For any permutative category C, there is an associated algebraic K-theory spectrum

K(C). When C = FinSets, the category of finite sets, one has the following theorem of

Barratt-Priddy-Quillen, which makes precise the statement K(F1) ≃ S.

Theorem 3.4.2. Let C be a skeleton of FinSets regarded as a permutative category. There
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is an equivalence

K(C) ≃ S

Proof. See [8].

With this in place, the analogy suggests the following theorem of Gunnar Carlsson, known

as the Segal conjecture.

Theorem 3.4.3. Let π0
st(−) denote zeroth stable cohomotopy - i.e. the cohomology theory

represented by the sphere spectrum S. If G is a finite group, one has an isomorphism

π0
st(BG) ≅ A(G)ˆI

where A(G) is the Burnside ring of G and I is its augmentation ideal.

Proof. See [16].

Remark 3.4.4. Carlsson’s proof rests on the important base cases G = Cp. When p = 2, this

was proven by Lin in [56], and it was proven by Gunawardena at odd primes [32]. The

proofs of these cases involve difficult computations in the Adams spectral sequence, but the

description of Cp-equivariant stable homotopy via the Cp Tate square allows for the result

in these cases to be recast in several ways, and we focus on the G = Cp case for the rest of

the section.

We first identify the zeroth stable cohomotopy group of BG with the zeroth equivariant

homotopy group of the Borel sphere.

Lemma 3.4.5. There is an isomorphism

π0
st(BG) ≅ πG0 (F (EG+, S

0))
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Proof. One has isomorphisms

πG0 (F (EG+, S
0)) ≅ [EG+, S

0]G

≅ [EG+,EG+]G

≅ HomHo(Fun(BG,Sp))(S0, S0)

≅ [(S0)hG, S0]

≅ [BG+, S
0]

= π0
st(BG)

From the first line to the second, we have used the isotropy separation sequence and the fact

that

MapSpG(EG+, ẼG) ≃ ∗

The next isomorphism uses the fact that

EG+ ∧ (−) ∶ Fun(BG,Sp)→ SpG

is a fully faithful left adjoint (see Remark 3.1.11). The next isomorphism uses the fact that

(−)hG ∶ Fun(BG,Sp)→ Sp

is left adjoint to the trivial action functor i∗ ∶ Sp → Fun(BG,Sp). Finally, we make the

identifications

(S0)hG ≃ EG+ ∧G S0 ≃ (EG ×G ∗)+ ≃ BG+

Under this isomorphism, using also the isomorphism πG0 (S0) ≅ A(G) of Remark 3.1.10,

the Segal conjecture for G becomes the claim that there is an isomorphism

πG0 (S0)ˆI ≅ πG0 (F (EG+, S
0))
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Homotopy theorists are fond of lifting algebraic completion statements like the one appearing

in the Segal conjecture to topological completions, and in this case we make the following

definition for G = Cp.

Definition 3.4.6. Let (−)ˆI ∶ Sp
Cp → SpCp denote Bousfield localization at the Cp-spectrum

cof(ε), where ε ∈ A(Cp) is the element p − [Cp], regarded as a map of Cp-spectra

ε ∶ S0 → S0

Remark 3.4.7. When G = Cp, the augmentation ideal I is principal, generated by the above

element ε. We may therefore think of Bousfield localization at cof(ε) as topological I-

completion. In the following proposition, we give two explicit descriptions of topological

I-completion, which serve to justify the terminology.

Proposition 3.4.8. For X ∈ SpCp, there are equivalences:

1. (X)ˆI ≃ lim←Ðn
X/εn where X/εn is the Cp-spectrum given by the cofiber of the map

X ≃ S0 ∧X εn∧1ÐÐ→ S0 ∧X ≃X

2. (X)ˆI ≃ F (K(ε),X), where K(ε) fits into a cofiber sequence

K(ε)→ S0 → S0[ε−1]

where

S0[ε−1] = colim(S0 εÐ→ S0 εÐ→ ⋯)

Proof. For (1), we first need to establish that lim←Ðn
X/εn is cof(ε)-local. Suppose

Z ∧ cof(ε) ≃ ∗

Then

MapSpCp(Z, lim←Ð
n

X/εn) ≃ lim←Ð
n

MapSpCp(Z,X/εn)
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but εn ∶ Z → Z is an equivalence, so MapSpCp(Z,X/εn) ≃ ∗ for all n. We are done if we can

show that

X ∧ cof(ε)→ (lim←Ð
n

X/εn) ∧ cof(ε)

is an equivalence. This follows from the fact that

X/εn ∧ cof(ε) ≃X ∧ cof(εn) ∧ cof(ε)

and that cof(εn) ∧ cof(ε) ≃ cof(ε) for n sufficiently large. Indeed, one has a cofiber sequence

cof(ε) εnÐ→ cof(ε)→ cof(ε) ∧ cof(εn)

and the second map in the sequence is an equivalence if and only if εn acts as zero on cof(ε).

We prove this claim in the proof of the lemma below. For (2), taking the colimit in n of

cofiber sequences

S0 εnÐ→ S0 → S0/εn

one has an equivalence K(ε) ≃ colimn Σ−1S0/εn. This gives

F (K(ε),X) ≃ F (colimn Σ−1S0/εn,X)

≃ lim←Ð
n

F (Σ−1S0/εn,X)

and the cofiber sequence S0 εnÐ→ S0 → S0/εn gives an equivalence

F (Σ−1S0/εn,X) ≃X/εn

Lemma 3.4.9. There is an isomorphism

π
Cp
0 ((S0)ˆI) ≅ π

Cp
0 (S0)ˆI = A(Cp)ˆI

Proof. Since S0 is connective, we see that

π
Cp
0 (S0/εn) ≅ πCp0 (S0)/εn = A(Cp)/εn
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By the Milnor sequence, it therefore suffices to show that lim1 π
Cp
1 (S0/εn) = 0. Note that

ε = p − [Cp], and

A(Cp) ≅ Z[x]/(x2 − px)

where x corresponds to the Cp-set [Cp]. It follows that in A(Cp), εn = pn − pn−1[Cp], so in

particular, for an A(Cp)-module M ,

im(εn ∶M →M) ⊂ pn−1M

From the long exact sequences in homotopy we have a short exact sequence of pro-A(Cp)-

modules

0→ {coker(πCp1 (S0) εnÐ→ π
Cp
1 (S0))}→ {π1(S0/εn)}→ {ker(A(Cp)

εnÐ→ A(Cp))}→ 0

so it suffices to show the two outer lim1’s vanish. The right one vanishes because ker(εn) =

ker(ε) for all n - as one checks directly given the above presentation of A(Cp) - so this pro

system is constant and the lim1 vanishes.

For the left one, we use the Tom dieck splitting which implies that

(S0)Cp ≃ S0 ∨BCp+

so that

π
Cp
1 (S0) = π1((S0)Cp) = π1(S0 ∨BCp+) = π1(S0)⊕ π1(S0)⊕ π1(BCp) = Z/2⊕Z/2⊕Z/p

This is a stable homotopy group of BCp but it one coincides with the unstable one because

Z/p is abelian and BCp is connected. Now we use that

im(εn ∶M →M) ⊂ pn−1M

If p = 2, then we see that εn acts by zero for n > 1, and so the cokernel pro system is constant

and the lim1 vanishes. If p > 2, εn kills the Z/p component for n > 1, and p acts by the

identity on the 2-torsion part, so for any x in the 2-torsion part,

εn(x) = pnx − pn−1[Cp]x = x − pn−1tr(res(x)) = x − tr(res(x))
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using that π1(S0) = Z/2{η} is 2-torsion so the transfer map has to land back in the 2-torsion

part. So εn = ε as an endomorphism of πCp1 (S0), so the cokernel pro system is constant and

the lim1 vanishes.

This argument also shows us that ε acts nilpotently on cof(ε): the short exact sequence

of A(Cp)-modules

coker(π1(cof(ε))
εÐ→ π1(cof(ε)))→ [cof(ε), cof(ε)]Cp → ker(π0(cof(ε))

εÐ→ π0(cof(ε)))

tells us we need only show ε acts nilpotently on π0(cof(ε)) and π1(cof(ε)), which follows

easily from the above arguments.

Using this isomorphism, we may recast the Segal conjecture for Cp in the following way:

Proposition 3.4.10. The following are equivalent:

1. The map S0 → F (ECp+, S0) is an I-complete equivalence.

2. The map S0 → F (ECp+, S0) is a p-complete equivalence.

3. The Tate diagonal S0 → (NCp
e (S0))tCp is a p-complete equivalence.

and each of these implies the Segal conjecture for Cp.

Proof. That the three claims are equivalent follows from applying I-completion to the Tate

square for S0, and using the fact that I-completion and p-completion coincide on Cp-spectra

of the form ẼCp ∧X, as the ring map

S0 → ẼCp

sends ε = p − [Cp]↦ p.

It suffices to show that the first claim implies the Segal conjecture for Cp, and we begin

by showing that F (ECp+, S0) is I-complete. By Proposition 3.4.8 (2), it would suffice to

show that S0[ε−1] ∧ECp+ ≃ ∗. Let T be the localizing subcategory

T = {Z ∈ SpCp : S0[ε−1] ∧Z = ∗}
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Then T contains Cp+ because the underlying map of ε is 0. It suffices then to note that

ECp+ is in the localizing subcategory generated by Cp+, as can be seen from the simplicial

filtration of

EG+ ≃ ∣B(G+,G+,∗)∣

Now, if the map S0 → F (ECp+, S0) is an I-complete equivalence, then

(S0)ˆI ≃ F (ECp+, S0)

and the Segal conjecture would follow from the previous lemma.

Remark 3.4.11. Using Proposition 3.4.10 (3), Nikolaus and Scholze considered the Tate

diagonal

X → (NCp
e (X))tCp

and showed that it is a p-complete equivalence for all X bounded below (see [74, III.1.7]).

Their argument was by induction up the Postnikov tower of X, whereby they reduced the

general case to the case X = HFp. Using the Tate square for NCp
e HFp, this is equivalent to

the map of Cp-spectra

N
Cp
e (HFp)→ F (ECp+,N

Cp
e (HFp))

being an equivalence. We return to this characterization in Chapter 5 at p = 2 and use it to

give a proof of the C2-Segal conjecture via Norms of Real bordism theory.
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Chapter 4

SMASHING LOCALIZATIONS IN EQUIVARIANT STABLE HOMOTOPY

In this chapter, we investigate analogs of the Ravenel conjectures (see Section 2.2.3) in

SpC2n , the category of genuine C2n-spectra. We focus, in particular on the smash product

and chromatic convergence theorems. We show that the analogues of these theorems for the

ER(n)’s do not hold in genuine C2-spectra, but they do hold in cofree C2-spectra. That we

need to pass to Borel C2-spectra is perhaps unsurprising because MUR itself is cofree: it is

a theorem of Hu and Kriz that the map

MUR → F (EC2+,MUR)

is an equivalence in SpC2 , and similarly for ER(n). In the case of the nilpotence and thick

subcategory theorems, the analogs for Real bordism theory are easily seen to fail in genuine

C2-spectra. Passing to Borel C2-spectra, the nilpotence theorem still fails for MUR, but the

analog of the thick subcategory theorem is more delicate, and we remark on the difficulties

in Remark 4.3.3.

In their solution to the Kervaire Invariant One problem [39], Hill, Hopkins, and Ravenel

construct genuine C2n-spectra MU ((C2n)) ∶= NC2n

C2
MUR that bring Real bordism theory into

the C2n-equivariant context. These play an essential role in their proof: their detecting spec-

trum is a localization of MU ((C8)). Recently, Beaudry, Hill, Shi, and Zeng have constructed

versions of Johnson-Wilson theories in this context [11], which they call D−1BP ((G))⟨m⟩. We

give a description of the Bousfield classes of these spectra and deduce analogous results.

Our analysis begins with the observation that the ER(n)’s and EG(m)’s are Bousfield

equivalent to certain induced G-spectra. We therefore study in general how Bousfield classes

in the equivariant context behave under various change of group functors, most of which
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send smashing Bousfield classes to smashing Bousfield classes. The exceptional case is that

of the induction functor

G+ ∧H (−) ∶ SpH → SpG

for a subgroup H ⊂ G. We give a necessary and sufficient condition for a smashing Bousfield

class to be preserved by induction, and we find that the above formula for LER(n) is generic

in this context.

In Section 4.1, we review Bousfield localization of G-spectra and the relationship between

smashing localizations and tensor idempotents. In 4.2, we study the interaction between

Bousfield localization functors and change of group functors in general, specializing then to

smashing localizations.

From here, we move to applications of Section 4.2, beginning in 4.3 with the proofs

of the analogues of the smash product and chromatic convergence theorems in the Borel

equivariant context - i.e. in cofree G-spectra - and a remark on analogs of the nilpotence

and thick subcategory theorems. Nonequivariantly, the functors LE(n) have the additional

remarkable property that the subcategories of finite p-local spectra

C≥n = {X ∈ Spω(p) : LE(n−1)(X) = 0}

along with the trivial subcategory {0} form a complete list of the thick tensor ideals in the

category of finite p-local spectra (see Section 2.2.3). A description of the thick tensor ideals

in finite G-spectra has been given for all G abelian by [9], but not all of the thick tensor ideals

in finite C2-spectra correspond to LER(n) in an analogous way. For G = Cpn , we construct a

family of new G-spectra E(J ) - indexed by the thick tensor ideals J in (SpG)ω
(p)

- such that

LE(J ) is smashing, J is the collection of finite acyclics of E(J ), and the geometric fixed

points of E(J ) at any subgroup is a nonequivariant E(n).

In Section 4.4, we use formulae like the above for LER(n) to observe that induced localiza-

tions upgrade the norms available in an N∞-algebra, and we determine exactly which new

norms appear. This generalizes a result of Blumberg and Hill that if E ∈ SpG is a cofree
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E∞-ring, it is automatically genuine G-E∞.

Finally, in Section 4.5, we return to the Borel perspective on the main theorems mentioned

above. It is a result of [5] (upgraded to the level of symmetric monoidal ∞-categories

by [66]) that Sp, the category of nonequivariant spectra, is equivalent to the category of

modules in SpC2 over the E∞-ring A = F (C2+, S0), so that the coinduction functor becomes

restriction of scalars, and the restriction functor becomes extension of scalars. Moreover,

extension of scalars induces an equivalence between the category of Borel C2-spectra and

(ModSpC2(A))hC2 .

We show that, by analogy, if η ∶ 1→ A is a quasi-Galois extension in a symmetric monoidal

stable ∞-category, it is often possible to use a norm construction to take a smashing A-

module M and produce a smashing object in the category of A-locals. This is equivalent to

producing a smashing-then-complete type localization formula for η∗M . We give a necessary

and sufficient condition for this localization to be smashing in the category of A-modules.

4.1 Equivariant Bousfield classes

In this section, we review what we need from equivariant Bousfield localization following

[37] and smashing localizations following [6].

4.1.1 Equivariant categories of acyclics

We begin with a review of the characterization of acyclics in an equivariant context given

in [37].

Definition 4.1.1. If E is a G-spectrum, we let ZE denote the category of E-acyclics : the

full subcategory of SpG consisting of all Z such that E ∧Z is equivariantly contractible. We

let LE denote the category of E-locals : the full subcategory of SpG consisting of all X such

that SpG(Z,X) ≃ ∗ for all Z ∈ ZE. We say E,F ∈ SpG are Bousfield equivalent (denoted

⟨E⟩ = ⟨F ⟩) if ZE = ZF .
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Since the geometric fixed point functors ΦH are symmetric monoidal and jointly conser-

vative, this gives us a concrete way to describe ZE:

Proposition 4.1.2. [37, Proposition 3.2] If Z ∈ SpG, then Z ∈ ZE if and only if ΦH(Z) ∈

ZΦH(E) for all subgroups H ⊂ G:

ZE = ⋂
H⊂G

(ΦH)−1(ZΦH(E))

Corollary 4.1.3. [37] Suppose E ∈ SpG has the property that ΦH(E) ≃ ∗ for all H ⊂ G

nontrivial, then ZE = (Φ{e})−1(ZΦ{e}(E)). That is, Z ∈ SpG is E-acyclic if and only if its

underlying spectrum is Φ{e}(E)-acyclic.

From this, we deduce a useful characterization of the Bousfield classes of the Real

Johnson-Wilson theories introduced by Hu-Kriz [48] and studied extensively by Kitchloo-

Wilson [50].

Example 4.1.4. Let ER(n) denote the n-th Real Johnson-Wilson theory, En a Morava E-

theory associated to a perfect field k of characteristic 2 and G a height n formal group over

k, and E(n) the usual nonequivariant Johnson-Wilson theory as in 3.2.12 and 2.2.17. Then

⟨ER(n)⟩ = ⟨En⟩ = ⟨C2+ ∧E(n)⟩

Proof. These three C2-spectra all have contractible geometric fixed points, and the Bousfield

classes of their underlying spectra agree.

4.1.2 Smashing spectra and idempotent triangles

We review the theory of smashing localizations - for more details see [6], [58], [78], and [79].

We first recall the following basic fact about Bousfield localization that we will use repeatedly.

For a reference on the existence of Bousfield localizations of G-spectra, see XXII.6 in [61].

Lemma 4.1.5. If E ∈ SpG is a ring spectrum, then any module M over E (e.g. E itself) is

E-local.
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Proof. Let Z ∈ ZE, then any map f ∶ Z →M factors as follows

Z M

E ∧Z E ∧M

f

1E∧f

µM

but then E ∧Z ≃ ∗, hence f is null.

Definition 4.1.6. For E ∈ SpG, let LE denote the corresponding Bousfield localization

functor. We say that LE is a smashing localization or that E is a smashing G-spectrum if

the natural map

LE(S0) ∧X → LE(S0) ∧LE(X)→ LE(X)

is an equivalence for all X ∈ SpG.

Recall that Bousfield localization at E determines for each X ∈ SpG a cofiber sequence

ZE(X) ψXÐ→X
φXÐ→ LE(X)

with ZE(X) ∈ ZE and LE(X) ∈ LE, which is unique up to homotopy with respect to these

properties.

Proposition 4.1.7. The following characterizations of smashing localizations are equivalent:

1. LE is smashing.

2. LE is closed under homotopy colimits.

3. LE is closed under arbitrary coproducts.

4. LE is a smash ideal. That is X ∈ LE, Y ∈ SpG Ô⇒ X ∧ Y ∈ LE.

5. If R ∈ LE is a ring spectrum, every R-module is in LE.

6. ⟨E⟩ = ⟨LE(S0)⟩
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Proof. For 1 ⇐⇒ 2 ⇐⇒ 3 see [58]. We show 1 Ô⇒ 4 Ô⇒ 5 Ô⇒ 6 Ô⇒ 1: If LE is

smashing, then if X ∈ LE and Y ∈ SpG,

X ∧ Y ≃ LE(X) ∧ Y ≃ LE(S0) ∧X ∧ Y ≃ LE(X ∧ Y ) ∈ LE

If LE is a smash ideal, R ∈ LE is a ring spectrum, and M is an R-module, then M is a

retract of R ∧M , which must be local, and LE is closed under retracts. Note that LE is lax

monoidal (on the level of the homotopy category), hence LE(S0) is a ring spectrum in LE.

ZLE(S0) ⊂ ZE is clear, and assuming (5), Z ∈ ZE implies that Z ∧ LE(S0) ∈ ZE, and as a

module over LE(S0), Z ∧ LE(S0) ∈ LE, hence Z ∧ LE(S0) ≃ ∗, i.e. Z ∈ ZLE(S0). Now, since

for any X ∈ SpG, X → LE(S0) ∧X becomes an equivalence after smashing with E, to show

LE is smashing, it suffices to show LE(S0) ∧X ∈ LE. But since LE(S0) is a ring spectrum,

LE(S0) ∧X ∈ LLE(S0) by 4.1.5, but LLE(S0) = LE, assuming (6).

We will prefer characterization (6), as it is the only one that is phrased as a condition on

the category of E-acyclics, rather than E-locals. Smashing localizations were studied in a

more general setting by Balmer and Favi in [6], and we recall here some of their definitions

and results.

Definition 4.1.8. [6, Definition 3.2] Let (T ,⊗,1) be a tensor-triangulated (tt-) category

(e.g. Ho(SpG)). We say that a distinguished triangle in T of the form

e
ψÐ→ 1

φÐ→ f → Σe

is an idempotent triangle if it satisfies any of the following equivalent conditions:

1. e⊗ f = 0

2. (1e ⊗ ψ) ∶ e⊗ e→ e is an isomorphism. (Left Idempotent)

3. (1f ⊗ φ) ∶ f → f ⊗ f is an isomorphism. (Right Idempotent)

The relationship between idempotent triangles and smashing localizations is as follows.
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Definition 4.1.9. [6] Let T be a tt-category and J ⊂ T a thick tensor ideal. We define

J ⊥ = {t ∈ T : HomT (z, t) = 0 for all z ∈ J }

We say that J is a Bousfield ideal if for every t ∈ T , there exists a distinguished triangle

et → t→ ft → Σet

such that et ∈ J and ft ∈ J ⊥. We say that J is a smashing ideal if J ⊥ is a tensor ideal.

Theorem 4.1.10. If (T ,⊗,1) is a rigidly-compactly generated tt-category, there is a 1-1

correspondence between isomorphism classes of idempotent triangles and smashing ideals in

T , wherein J as above corresponds to the triangle

e1 → 1→ f1 → Σe1

and an idempotent triangle

e→ 1→ f → Σe

corresponds to the smashing ideal ker(− ⊗ f).

Proof. See [6, Theorem 3.5].

Corollary 4.1.11. If (T ,⊗,1) = (Ho(SpG),∧, S0), there is a 1-1 correspondence between

isomorphism classes of idempotent triangles in T and smashing Bousfield classes ⟨E⟩, and

hence also between smashing ideals in Ho(SpG) and smashing Bousfield classes.

Proof. Each smashing ⟨E⟩ determines the idempotent triangle

ZE(S0)→ S0 → LE(S0)→ ΣZE(S0)

as LE(S0) ∧ ZE(S0) ≃ LE(ZE(S0)) ≃ ∗. Conversely, if e → S0 → f → Σe is an idempotent

triangle, then it follows that it is isomorphic to

Zf(S0)→ S0 → Lf(S0)→ ΣZf(S0)
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and therefore corresponds to the smashing Bousfield class ⟨f⟩. Indeed, f is a ring spectrum

via the isomorphism f ⊗ f ≅ f , so f is f -local, and the map S0 → f is therefore isomorphic

as a right idempotent to the map S0 → Lf(S0). These give mutually inverse maps of posets

because if ⟨E⟩ is smashing, then ⟨E⟩ = ⟨LE(S0)⟩ by 4.1.7, and conversely we have just shown

that f ≅ Lf(S0).

Example 4.1.12. Let F be a family of subgroups of G and EF the corresponding universal

space. It is easy to see that EF ×EF is also a universal space for F , hence the collapse map

EF+ ∧EF+ → EF+ ∧ S0 ≃ EF+

is an equivalence, so that

EF+ → S0 → ẼF → ΣEF+

is an idempotent triangle corresponding to the smashing localization LẼF(−).

Corollary 4.1.13. If E1, . . . ,En ∈ SpG are all smashing, then so are E1 ∧ ⋯ ∧ En and

E1∨⋯∨En. Moreover, ZE1∨⋯∨En(S0) ≃ ZE1(S0)∧⋯∧ZEn(S0) and LE1∧⋯∧En(S0) ≃ LE1(S0)∧

⋯ ∧LEn(S0).

Proof. It is shown in [6] that the tensor product gives the product in the category of left

idempotents and the coproduct in the category of right idempotents. It follows from 4.1.10

then that the poset of smashing ideals in SpG has meets and joins, and if E,F are smashing

G-spectra, these correspond to E ∨ F and E ∧ F respectively.

4.2 Bousfield localizations and change of group

In this section, we start with a G-spectrum E and explore the Bousfield localization

functors associated to the spectrum F (E) along various change of group functors F . We

explore whether F (E) is smashing, assuming that E is smashing.
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4.2.1 The general case

We first establish some elementary facts about the behavior of localization functors along

change of group functors F in general. We first recall some definitions from Sectionsub-

sec3.1.2

Definition 4.2.1. Let i∗ ∶ Sp → SpG denote the functor that sends a spectrum to the

corresponding G-spectrum with trivial action, and (−)G ∶ SpG → Sp its right adjoint, the

genuine fixed points. For a subgroup H ⊂ G, let iGH ∶ SpG → SpH and G+∧H (−) ∶ SpH → SpG

denote the restriction and induction functors respectively.

Proposition 4.2.2. For any E,X ∈ SpG, we have

LiGHE(i
G
HX) ≃ iGHLE(X)

Proof. iGH is symmetric monoidal, hence the map iGHX → iGHLEX becomes an equivalence

after smashing with iGHE. iGHLE(X) is iGHE-local because if Z ∈ ZiGHE, then

[Z, iGHLE(X)]H ≅ [G+ ∧H Z,LE(X)]G

and G+ ∧H Z ∈ ZE, as

(G+ ∧H Z) ∧E ≃ G+ ∧H (Z ∧ iGHE) ≃ ∗

From 4.1.2, it is not difficult in general to characterize the F (E)-acyclics in terms of

the E-acyclics, where F is one of our change of group functors above. Characterizing the

F (E)-locals in terms of the E-locals is much more difficult. For restriction and induction,

however, we can give a simple necessary and sufficient condition.

Proposition 4.2.3. For any E ∈ SpG, Y ∈ SpH is iGHE-local if and only if G+ ∧H Y is

E-local.
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Proof. If Y is iGHE-local, then if Z ∈ ZE, we have

[Z,G+ ∧H Y ]G ≅ [iGHZ,Y ]H = 0

via the Wirthmüller isomorphism. Conversely, if Z ∈ ZiGHE, G+ ∧H ZiGHE ⊂ ZE implies that

[Z, iGH(G+ ∧H Y )]H ≅ [G+ ∧H Z,G+ ∧H Y ]G = 0

and since Y is a summand of iGH(G+ ∧H Y ), [Z,Y ]H = 0 .

Definition 4.2.4. Let H ⊂ G, then we let FH be the family of subgroups of G that are

subconjugate to H - that is, FH is the smallest family of subgroups of G containing H. We

say a G-spectrum X is H-cofree if the canonical map

X → F (EFH+,X)

is an equivalence, where F (−,−) denotes the internal mapping spectrum in SpG, and EFH

is the universal G-space for the family FH . We simply say cofree, or Borel complete, when

H = {e}. See also Remark 3.1.11.

Lemma 4.2.5. If X ∈ SpG, then F (EFH+,X) ≃ LG/H+(X).

Proof. Since iGH(EFH+) ≃ S0, it follows that

X → F (EFH+,X)

becomes an equivalence after smashing with G/H+. F (EFH+,X) is G/H+-local because if

Z ∈ ZG/H+ so that iGHZ ≃ ∗, then

[Z,F (EFH+,X)]G ≅ [Z ∧EFH+,X]G

and Z ∧EFH+ ≃ ∗. For this, let

T = {Y ∈ SpG : Z ∧ Y ≃ ∗}

then T is a localizing subcategory of SpG, and EFH+ is in the localizing subcategory gener-

ated by {G/K+ : K ∈ FH}, so it suffices to observe that G/K+ ∈ T for all K ∈ FH .
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Corollary 4.2.6. A map f ∶X → Y in SpG between H-cofree G-spectra is an equivalence if

and only if iGH(f) is an equivalence.

Proof. In general, a map between E-locals is an equivalence if and only if it becomes an

equivalence after smashing with E. Letting E = G/H+ gives the result.

Proposition 4.2.7. For any E ∈ SpH , X ∈ SpG is G+∧HE-local if and only if X is H-cofree

and iGHX is iGH(G+ ∧H E)-local.

Proof. Suppose X is G+ ∧H E-local. Clearly, ZG/H+ ⊂ ZG+∧HE and hence LG+∧HE ⊂ LG/H+ -

that is, G+ ∧H E-locals are H-cofree. iGHX is iGH(G+ ∧H E)-local by 4.2.2.

Conversely, if X is H-cofree, then it suffices to show the map φX ∶X → LG+∧HE(X) is an

equivalence, and by 4.2.6, it suffices to show that iGH(φX) is an equivalence, which follows

again by assumption from 4.2.2.

Remark 4.2.8. Since E is a retract of iGH(G+ ∧H E), we have ZiGH(G+∧HE) ⊂ ZE and hence

LE ⊂ LiGH(G+∧HE). For X to be G+ ∧H E-local, it is therefore sufficient for X to be H-cofree

and iGHX to be E-local.

The following are easy consequences of the double coset formula for iGH(G+ ∧H E).

Corollary 4.2.9. If H ⊂ G is normal, X ∈ SpG is G+∧HE-local if and only if X is H-cofree

and iGHX is ⋁
[g]∈G/H

gE-local, where gE are the Weyl conjugates of E.

Example 4.2.10. We give an example showing that E and gE do not necessarily determine

the same Bousfield class. Let G = Σ4, H = V4 ⊲ G, and g = (123). Then

gẼF⟨(12)(34)⟩ ≃ ẼF⟨(14)(23)⟩

It is straightforward to check on geometric fixed points that EF⟨(12)(34)⟩+
∉ ZẼF⟨(14)(23)⟩

but

of course EF⟨(12)(34)⟩+
∈ ZẼF⟨(12)(34)⟩

.

Corollary 4.2.11. If G is abelian, X ∈ SpG is G+ ∧H E-local if and only if X is H-cofree

and iGHX is E-local.
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4.2.2 The smashing case

We now discuss how smashing localizations behave under change of group functors. We

first recall the following variant of the norm functor NG
H ∶ SpH → SpG of [39]. Let NG/H ∶

SpG → SpG denote the composition NG
H ○ iGH , and for

T = G/H1 ⊔⋯ ⊔G/Hn

a finite G-set, we let NT ∶ SpG → SpG denote the functor NG/H1 ∧⋯ ∧NG/Hn . We will also

need the following description of how geometric fixed points interact with the norm.

Proposition 4.2.12. For any K,H ⊂ G, and for any E ∈ SpH , the diagonal gives an

equivalence of spectra

ΦKNG
HE

≃Ð→ ⋀
[g]∈K/G/H

ΦKg∩HE

Proof. See [39, Proposition B.209].

Proposition 4.2.13. Let H ⊂ G be a subgroup. Smashing Bousfield classes are preserved by

the following change of group functors:

1. If E ∈ Sp is smashing, then i∗E ∈ SpG is smashing.

2. If E ∈ SpG is smashing, then iGHE ∈ SpH is smashing.

3. If E ∈ SpG is smashing, then ΦH(E) ∈ Sp is smashing.

4. Let f ∶ G→ G′ be a group homomorphism and f∗ ∶ SpG
′ → SpG the induced functor. If

E ∈ SpG
′
is smashing, then f∗E ∈ SpG is smashing.

5. If E ∈ SpH is smashing, then NG
HE is smashing.

6. If E ∈ SpG is smashing, and T is a finite G-set, then NTE is smashing.

7. If E ∈ SpG is smashing, and for all H ⊂ G, ZEG ⊂ ZEH (e.g. if E is a ring spectrum),

then EG is smashing.
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Moreover, for each functor F in items (1)-(6), we have LF (E)(F (X)) ≃ F (LE(X)). In item

(7), we have

ZEG(X) = ⋀
H⊂G

ΦH(ZE(X))

so that

LEG(X) = cofib( ⋀
H⊂G

ΦH(ZE(X))→ S0)

Proof. In all cases, we have a smashing spectrum E and therefore ⟨E⟩ = ⟨LE(S0)⟩. If F is

one of the functors listed in items (1)-(6), it is symmetric monoidal, and hence F (LE(S0)) is

a right idempotent, so it suffices to show ⟨F (LE(S0))⟩ = ⟨F (E)⟩. We therefore show, more

generally, that if ⟨X⟩ = ⟨Y ⟩, then ⟨F (X)⟩ = ⟨F (Y )⟩ if F is one of the functors listed in items

(1)-(6). For (1), the relation ΦH ○ i∗ ≃ idSp for all H ⊂ G gives

⟨ΦH(i∗X)⟩ = ⟨X⟩ = ⟨Y ⟩ = ⟨ΦH(i∗Y )⟩ Ô⇒ ⟨i∗X⟩ = ⟨i∗Y ⟩

For (2), note that

Z ∈ ZiGHX ⇐⇒ (G+ ∧H Z) ∧X ≃ ∗ ⇐⇒ (G+ ∧H Z) ∧ Y ≃ ∗

iGHY is shown to have the same acyclics by an identical argument. For (3), we have

Z ∧ΦG(X) ≃ ∗ ⇐⇒ ẼP ∧ i∗Z ∧X ≃ ∗

⇐⇒ ẼP ∧ i∗Z ∧ Y ≃ ∗

⇐⇒ Z ∧ΦG(Y ) ≃ ∗

For (4), if H is any subgroup of G′, the relation ΦH ○ f∗ = Φf(H) gives

⟨ΦH(f∗X)⟩ = ⟨Φf(H)X⟩ = ⟨Φf(H)(Y )⟩ = ⟨ΦH(f∗Y )⟩
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by applying case (3). For (5), 4.2.12 gives

⟨ΦK(NG
H(X))⟩ = ⟨ ⋀

[g]∈K/G/H

ΦKg∩H(X)⟩

= ⋀
[g]∈K/G/H

⟨ΦKg∩H(X)⟩

= ⋀
[g]∈K/G/H

⟨ΦKg∩H(Y )⟩

= ⟨ΦK(NG
H(Y ))⟩

for any subgroup K ⊂ G, again by applying case (3). For (6), if T = G/H, the result follows

by combining cases (2) and (5), and the general case follows from 4.1.13. The final remark

follows in these cases from the localizations being smashing, as then the condition may be

checked on the sphere spectrum.

For the genuine fixed points functor (7), we have ZEG ⊂ ZEH for allH ⊂ G, by assumption,

hence

Z ∈ ZEG ⇐⇒ Z ∈ ZEH ∀ H ⊂ G

⇐⇒ (i∗Z ∧E)H ≃ ∗ ∀ H ⊂ G

⇐⇒ i∗Z ∈ ZE

and this holds if and only if Z ∧ ΦH(E) ≃ ∗ for all H ⊂ G. For the second equivalence, we

use the fact that the natural map

Z ∧EH → i∗(Z ∧E)H

is an equivalence (see [37, 3.20]). We find:

⟨EG⟩ = ⟨ ⋁
H⊂G

ΦH(E)⟩

and the claim follows as in 4.1.13. The assumptions hold for E a ring spectrum because one

has restriction ring maps EG → EH given by applying (−)G to the map of rings

E → F (G/H
+
, S0) ∧E
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Remark 4.2.14. We needed to assume E is smashing in 4.2.13 to establish that ΦG(LE(S0))

is ΦG(E)-local, whereas with iGH , we could exploit the existence of a left adjoint to get around

this assumption. In fact, it is not necessarily true that ΦG(LE(S0)) is ΦG(E)-local without

this assumption. For example, if G = C2, E = C2+, X = S0, then the left hand side is a point,

and the right hand is (S0)tC2 . This example also shows us that the converse to case (3) of

4.2.13 is false, i.e. we cannot detect whether E is smashing just by knowing that ΦHE is

smashing for all H ⊂ G.

Corollary 4.2.15. We have the following characterizations of local objects for smashing

localizations:

1. If E ∈ SpG is smashing, X ∈ SpG is E-local if and only if ΦH(X) is ΦH(E)-local for

all H ⊂ G.

2. If E ∈ Sp is smashing, X ∈ SpG is i∗E-local if and only if ΦH(X) is E-local for all

H ⊂ G.

3. If f ∶ G → G′ is a group homomorphism, and E ∈ SpG
′
is smashing, X ∈ SpG is

f∗E-local if and only if ΦH(X) is Φf(H)(E)-local for all H ⊂ G.

4. If H ⊂ G, and E ∈ SpH is smashing, X ∈ SpG is NG
HE-local if and only if for all K ⊂ G,

and for all [g] ∈K/G/H, ΦK(X) is ΦKg∩H(E)-local.

5. If E ∈ SpG is smashing, and ZEG ⊂ ZEH for all H ⊂ G (e.g. if E is a ring spectrum),

then X ∈ SpG is EG-local if and only if i∗X is E-local.

Proof. For (1), X is E-local iff the map X → LE(X) is an equivalence, but this is true iff

ΦH(X)→ ΦH(LE(X)) ≃ LΦH(E)(X)

is an equivalence for all H, i.e. ΦH(X) is ΦH(E)-local for all H. The rest are immediate

consequences of (1).
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The norm is unique among the above functors in that it does not in general preserve

cofiber sequences. However, we have the following interesting corollary of 4.2.13:

Corollary 4.2.16. If G is abelian, NG
H preserves idempotent cofiber sequences. That is, if

e → S0 → f → Σe is an idempotent triangle in SpH , then NG
H(e) → S0 → NG

H(f) is a cofiber

sequence in SpG such that

NG
H(e)→ S0 → NG

H(f)→ ΣNG
H(e)

is an idempotent triangle.

Proof. By 4.1.11, every idempotent triangle in SpH is of the form

ZE(S0)→ S0 → LE(S0)→ ΣZE(S0)

We will show that the sequence

NG
H(ZE(S0))→ S0 → NG

H(LE(S0))

is equivalent to the idempotent cofiber sequence

ZNG
HE

(S0)→ S0 → LNG
HE

(S0)

Note that since NG
H(∗) = ∗, NG

H(−) sends the zero map to the zero map. Therefore the

composite NG
H(ZE(S0))→ S0 → NG

H(LE(S0)) is null, and so we have a commutative diagram

NG
H(ZE(S0)) S0 NG

H(LE(S0))

ZNG
HE

(S0) S0 LNG
HE

(S0)

f = ≃

To show that f is an equivalence, it suffices to show that ΦK(f) is an equivalence for all

K ⊂ G, hence it suffices to show ΦK(−) of the top row is a cofiber sequence. This gives

⋀
[g]∈K/G/H

ΦK∩H(ZE(S0))→ S0 → ⋀
[g]∈K/G/H

ΦK∩H(LE(S0))
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by 4.2.12, where we have used that G is abelian so that Kg = K. By 4.2.13, this may be

further identified with

⋀
[g]∈K/G/H

ZΦK∩H(E)(S0)→ S0 → ⋀
[g]∈K/G/H

LΦK∩H(E)(S0)

By 4.1.13, this is the idempotent cofiber sequence associated to ZΦK∩H(E), as

⟨ΦK∩H(E)⟩ = ⟨ ⋁
[g]∈K/G/H

ΦK∩H(E)⟩ = ⟨ ⋀
[g]∈K/G/H

ΦK∩H(E)⟩

since ΦK∩H(E) is smashing.

Remark 4.2.17. It doesn’t make sense to ask whether NG
H preserves idempotent triangles in

the sense of [6] because NG
H(S1) ≃ SIndGH(1), and so applying NG

H to the idempotent triangle

e→ S0 → f → Σe

yields the sequence of maps

NG
H(e)→ S0 → NG

H(f)→ SIndGH(1) ∧NG
H(e)

which is not a distinguished triangle in SpG unless H = G or e ≃ ∗. We have only shown

that, when G is abelian,

NG
H(e)→ S0 → NG

H(f)

is a cofiber sequence, and in particular the first two morphisms in an idempotent triangle.

We now give a counterexample to the above claim in the general case when G is not

necessarily abelian.

Proposition 4.2.18. Fix an inclusion C2 ↪ Σ3. The corresponding functor NΣ3

C2
∶ SpC2 →

SpΣ3 does not preserve all idempotent cofiber sequences.

Proof. Consider the idempotent cofiber sequence

EC2+ → S0 → ẼC2
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in SpC2 . Applying NΣ3

C2
yields the sequence

EFC3+
→ S0 → ẼP

which is not a cofiber sequence.

4.2.3 Induction and smashing localizations

By far the most interesting change of group functor with respect to smashing localizations

is induction, because it is not monoidal, and hence we treat it separately. We find that

induced G-spectra G+ ∧H E are rarely smashing, though we give a necessary and sufficient

condition for G+ ∧H E to be smashing.

Proposition 4.2.19. Suppose H ⊂ G, and E ∈ SpH . Then G+ ∧H E is smashing if and only

if ΦK(LG+∧HE(S0)) ≃ ∗ for all K ∉ FH and iGH(G+ ∧H E) is smashing.

Proof. Suppose G+ ∧H E is smashing, then any restriction of it is also smashing. If K ∉ FH ,

let F be the smallest family containing H and every proper subgroup of K. It follows that

ẼF ∈ ZG/H+ ⊂ ZG+∧HE, as iGHẼF ≃ ∗, hence

ΦK(G+ ∧H E) ≃ ∗

Since G+ ∧H E is smashing, ZG+∧HE = ZLG+∧HE(S0), so that

ΦK(LG+∧HE(S0)) ≃ ∗

Conversely, suppose ΦK(LG+∧HE(S0)) ≃ ∗ for all K ∉ FH and iGH(G+ ∧H E) is smashing.

To show LG+∧HE is smashing, it suffices to show then that

⟨ΦK(G+ ∧H E)⟩ = ⟨ΦK(LG+∧HE(S0)⟩

for all K ∈ FH . This may be checked after restriction to H, where it follows immediately

from the fact that that iGH(G+ ∧H E) is smashing, using 4.2.2.
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Corollary 4.2.20. If H ⊂ G is normal, and E ∈ SpH is smashing, then G+∧HE is smashing

if and only if ΦK(LG+∧HE(S0)) ≃ ∗ for all K ⊂H.

Proof. This follows immediately from the previous proposition along with the observation

that

⟨iGH(G+ ∧H E)⟩ = ⟨ ⋁
[g]∈G/H

gE⟩ = ⋁
[g]∈G/H

⟨gE⟩

is a smashing Bousfield class by 4.1.13 since gE is smashing for all g.

When H ⊂ G is normal, we arrive at a somewhat explicit formula for an induced localiza-

tion, which we can interpret as follows: induced smashing localizations are smashing after

H-cofree completion. When H = {e}, this can be further related to the corresponding trivial

localization.

Proposition 4.2.21. If H ⊂ G is normal, E ∈ SpH is smashing, and X ∈ SpG, then

LG+∧HE(X) ≃ LG/H+
(LG+∧HE(S0) ∧X) ≃ F (EFH+, LG+∧HE(S0) ∧X)

Proof. The map

X → F (EFH+, LG+∧HE(S0) ∧X)

is a G+ ∧H E equivalence since iGH(G+ ∧H E) is smashing, and the target is easily seen to be

G+ ∧H E-local from 4.2.7.

Proposition 4.2.22. Let E ∈ Sp be any spectrum, and X ∈ SpG, then

LG+∧E(X) ≃ F (EG+, i∗LEX)

Proof. The map X → F (EG+, Li∗EX) becomes an equivalence after smashing with G+ ∧E,

and the target is G+ ∧E-local by 4.2.7.

Corollary 4.2.23. Let E ∈ Sp be a smashing spectrum, then G+∧E is smashing if and only

if (LE(S0))tH ≃ ∗ for all nontrivial subgroups H ⊂ G.
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Proof. G+ ∧E is smashing if ΦH(LG+∧E(S0)) ≃ ∗ for all nontrivial subgroups H, but

ΦH(LG+∧E(S0)) ≃ ΦH(F (EG+, i∗LE(S0)))

≃ ΦH(F (EH+, i∗LE(S0)))

which is a module over the ring (LE(S0))tH . Conversely, if G+∧E is smashing, then ZG+∧E =

ZF (EG+,i∗LE(S0)), but ẼG ∧G+ ∧E ≃ ∗, and

(LE(S0))tH ≃ (ẼG ∧ F (EG+, i∗LE(S0)))H

Corollary 4.2.24. Let E = E(n) at the prime p, then for all G such that p divides ∣G∣,

G+ ∧E is smashing if and only if n = 0.

Proof. When n = 0, E(0) = HQ = L0(S0), and HQtH ≃ ∗ for all H nontrivial. If n > 0, then

G has an element of order p and hence if G+ ∧E were smashing, we would necessarily have

(Ln(S0))tCp ≃ ∗. However, we know from the main result of [47] that this Tate spectrum is

not contractible. Indeed, they show that

⟨(Ln(S0))tCp⟩ = ⟨Ln−1(S0)⟩

hence the result follows from the fact that Ln−1(S0) is not trivial.

We end this section with an example illustrating the necessity of the normality conditions

in 4.2.20 and 4.2.21. It shows that if E ∈ SpH , then E and iGH(G+ ∧H E) are not always

Bousfield equivalent, and E being smashing does not always guarantee that iGH(G+ ∧H E) is

smashing.

Proposition 4.2.25. Let G = Σ4 and H = D8 = ⟨(1234), (13)⟩ ⊂ Σ4. Then ẼF⟨(1234)⟩ is a

smashing D8-spectrum, but iΣ4

D8
(Σ4+ ∧D8 ẼF⟨(1234)⟩) is not smashing.
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Proof. ẼF⟨(1234)⟩ is smashing by 4.1.12. We have

D8 = {e, (13)(24), (12)(34), (14)(23), (1234), (1432), (13), (24)} ⊂ Σ4

D8/Σ4/D8 = {D8,D8(12)D8}

(12)D8 = {e, (13)(24), (12)(34), (14)(23), (1342), (1243), (14), (23)}

D8 ∩ (12)D8 = {e, (13)(24), (12)(34), (14)(23)} = V4

Therefore we have

iΣ4

D8
Σ4+ ∧D8 ẼF⟨(1234)⟩ = ẼF⟨(1234)⟩ ∨ (D8+ ∧V4 i

(12)D8

V4
((12)ẼF⟨(1234)⟩))

(12)ẼF⟨(1234)⟩ is the universal (12)D8 space ẼF⟨(1342)⟩, and hence i
(12)D8

V4
((12)ẼF⟨(1234)⟩) is the

universal V4-space ẼF⟨(14)(23)⟩. Therefore we may write

iΣ4

D8
Σ4+ ∧D8 ẼF⟨(1234)⟩ = ẼF⟨(1234)⟩ ∨ (D8+ ∧V4 ẼF⟨(14)(23)⟩)

We now assume for the sake of contradiction that this D8-spectrum is smashing, hence we

restrict to ⟨(1234)⟩ ≅ C4 to get a smashing C4-spectrum

iD8

⟨(1234)⟩
(ẼF⟨(1234)⟩ ∨ (D8+ ∧V4 ẼF⟨(14)(23)⟩)) ≃ iD8

⟨(1234)⟩
(D8+ ∧V4 ẼF⟨(14)(23)⟩)

One checks that

⟨(1234)⟩/D8/V4 = {⟨(1234)⟩eV4}

⟨(1234)⟩ ∩ V4 = ⟨(13)(24)⟩

so that

iD8

⟨(1234)⟩
(D8+ ∧V4 ẼF⟨(14)(23)⟩) ≃ ⟨(1234)⟩+ ∧V4∩⟨(1234)⟩ i

V4

V4∩⟨(1234)⟩
ẼF⟨(14)(23)⟩

≃ ⟨(1234)⟩+ ∧⟨(13)(24)⟩ ẼF⟨(14)(23)⟩∩⟨(13)(24)⟩

≃ C4+ ∧C2 ẼC2
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Now ẼC2 is a smashing C2-spectrum, and so by 4.2.20, C4+ ∧C2 ẼC2 is a smashing C4-

spectrum if and only if

ΦC4(LC4+∧C2
ẼC2

(S0)) ≃ ∗

and the proof of 4.2.21 shows that LC4+∧C2
ẼC2

(S0) = F (EP+, ẼC4), but

ΦC4(F (EP+, ẼC4)) ≃ (S0)tC2 /≃ ∗

4.3 Consequences for chromatic localizations

4.3.1 C2n-Borel Ravenel conjectures

In this section, we prove the main theorems stated in the beginning of this chapter, namely

that the analogs of the smash product theorem and the chromatic convergence theorem for

the ER(n)’s hold only after cofree completion. We remark on analogs of the nilpotence and

thick subcategory theorems. We also discuss recent C2n-equivariant analogs of the ER(n)’s

constructed in [11], and we identify their Bousfield classes.

Theorem 4.3.1. If n > 0, then ER(n) is not smashing. Moreover, for X ∈ SpC2,

LER(n)(X) ≃ F (EC2+, i∗LE(n)(S0) ∧X)

Proof. By 4.1.4, we have

⟨ER(n)⟩ = ⟨C2+ ∧E(n)⟩

and now the result follows from 4.2.22 and 4.2.24. For the claim about ΦC2(ER(n)), ER(n)

is a module over MUR[vn−1], and ΦC2(MUR[vn−1]) ≃ ∗ as ΦC2(vn) = 0 ( [39], 5.50).

Theorem 4.3.2. If X is a 2-local finite C2-spectrum, we have a diagram

X F (EC2+,X)

lim←Ðn
LER(n)(X)

≃
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Proof. The category of cofree C2-spectra is closed under homotopy limits, hence there exists a

unique up to homotopy vertical map making the above diagram commute. As a map between

cofree C2-spectra, it is an equivalence if and only if it induces an underlying equivalence.

The underlying map is an equivalence by the nonequivariant chromatic convergence theorem

(see [79]).

Remark 4.3.3. The MUR analogs of the nilpotence and thick subcategory theorems also fail

in genuine C2-spectra, and this is much easier to see. For the nilpotence theorem, the class

2 − [C2] ∈ πC2
0 (S0) ≅ A(C2) goes to 0 in πC2

0 (MUR) = Z, but it is not nilpotent in A(C2).

Passing to Borel C2-spectra does not correct this: the endomorphism ring of the unit in

Borel C2-spectra is A(C2)ˆI , by Lin’s theorem [56], and 2 − [C2] is still not nilpotent.

In the case of the thick subcategory theorem, the Balmer spectrum of (SpC2)ω was

determined in [7], and as remarked in the introduction, for n > 0, the collection of finite

acyclics of ER(n) do not determine all of the thick tensor ideals in (SpC2)ω, so no reasonable

analog of the thick subcategory theorem for the ER(n)’s (or the KR(n)’s) can hold in SpC2 .

Passing to Borel, we run into the following issue: the unit is not compact in Borel C2-spectra,

and in particular the compact objects and dualizable objects do not coincide. This makes

an analysis of the spectrum more difficult, but is a subject we plan to revisit in future work.

In [11], Beaudry, Hill, Shi, and Zeng construct genuine C2n-spectra that serve as analogs

to the ER(n)’s. We recall their construction, which hinges on the observation that one may

construct the C2n-spectrum

BP ((G))⟨m⟩ ∶= NC2n

C2
BPR/(C2n ⋅ tm+1,C2n ⋅ tm+2, . . .)

and for a carefully chosen class D ∈ πG∗ρGBP ((G)), D−1BP ((G))⟨m⟩ should have height h =

2n−1m. More precisely, they show:

Theorem 4.3.4. [11, Theorems 1.5 and 1.8] For h = 2n−1m, there is a class D ∈ πG∗ρGBP ((G))

and a height h formal group law Γh over F2 such that for any perfect field k of characteristic
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2, if we regard the corresponding Lubin-Tate theory E(k,Γh) as a cofree C2n-spectrum, there

is a diagram in SpC2n

BP ((G)) E(k,Γh)

D−1BP ((G))

It follows that the above map factors further through

EG(m) ∶=D−1BP ((G))⟨m⟩

which can be thought of as a C2n-equivariant height h Johnson-Wilson theory. The cor-

responding localization functors on SpC2n behave formally very similarly to those of the

ER(n)’s, as we can identify their Bousfield classes in a similar way. We need the following

results about the class D:

Theorem 4.3.5. [11, Theorem 1.2] The element

iGe D ∈ πe∗BP ((G))⟨m⟩ ≅ Z(2)[G ⋅ t1, . . . ,G ⋅ tm]

satisfies the following properties:

• vh divides D,

• (2, v1, . . . , vh) is a regular sequence in D−1πe∗BP
((G))⟨m⟩,

• vr ∈ Ir for r > h,

• D−1πe∗(BP ((G))⟨m⟩)/Ih ≅ F2[(tGm)±] with vh = t(2
h−1)/(2m−1)

m , and

• the formal group law carried by πe∗BP ((G))⟨m⟩ has height exactly h over the ring

D−1πe∗(BP ((G))⟨m⟩)/Ih

Corollary 4.3.6. The underlying spectrum of EG(m) is Bousfield equivalent to E(h), and

the geometric fixed points of EG(m) at any nontrivial subgroup is contractible. In particular,

⟨EG(m)⟩ = ⟨C2n+ ∧E(h)⟩
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Proof. For the claim about geometric fixed points, [11, Theorem 1.8] show that the class D

is divisible by norms of certain classes from πC2
∗ρC2

BP ((G)), all of which become null upon

applying ΦH for any nontrivial subgroup H ⊂ C2n , and the result follows as in [39, Section

10].

For the underlying spectrum, the conditions in 4.3.5 are enough to guarantee that the

map

Spec(D−1πe∗BP
((G))⟨m⟩)→MFG

factors through a faithfully flat cover of the open substackM≤h
FG, and any such Landweber

theory is Bousfield equivalent to E(h) by Remark 2.2.22. In more detail, items (1) and

(2) in 4.3.5 guarantee that the spectrum iC2n
e (D−1BP ((G))⟨m⟩) is Landweber exact, and by

functoriality it maps to the Landweber exact spectrum E with coefficient ring

E∗ ∶= (D−1πe∗BP
((G))⟨m⟩)[u]/(u2m−1 − tm)

with ∣u∣ = 2, which is 2-periodic. (D−1πe∗BP
((G))⟨m⟩)[u]/(u2m−1 − tm) is a free module over

D−1πe∗BP
((G))⟨m⟩, so the inclusion is faithfully flat, and the two Landweber theories are

Bousfield equivalent. In E∗, we may use u to conjugate the formal group into degree 0, and

now a spectrum X is E-acyclic if and only if the corresponding quasicoherent sheaves on

MFG determined by E0(X) and E1(X) are zero. It now suffices to show that the map

Spec(E0)→M≤h
FG

is a flat cover.

This map is flat by the Landweber exact functor theorem, so it suffices to show that it

is essentially surjective, and by 4.3.4, there is a factorization

Spec(E(k,Γh)0) Spec(E0)

M≤h
FG

p

and p is a faithfully flat cover, as Spec(E(k,Γh)0) is a Lubin-Tate universal space of height

h.
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The Bousfield classes of the EG(m)’s are therefore nested: we see that

ZEG(m) ⊂ ZEG(m−1)

and hence for any X ∈ SpC2n , we may form a chromatic tower

X → ⋯→ LEG(m)(X)→ LEG(m−1)(X)→ ⋯→ LEG(0)(X)

Our results for C2 now follow in essentially the same way for the EG(m)’s:

Theorem 4.3.7. Let EG(m) denote the C2n-spectrum D−1BP ((G))⟨m⟩ constructed in [11],

where h = 2n−1m.

• If m > 0, then EG(m) is not smashing. Moreover, for X ∈ SpC2n ,

LEG(m)(X) ≃ F (EC2n+, i∗LE(h)(S0) ∧X)

• If X is a 2-local finite C2n-spectrum, we have a diagram

X F (EC2n+,X)

lim←Ðm
LEG(m)(X)

≃

4.3.2 Smashing Cpn-spectra

In light of 4.3.1, a natural question from here is then if the ER(n) are not smashing, can

we construct equivariant spectra analogous to the E(n) that are smashing? More specifically,

every thick tensor ideal in Spω(p) is the collection of finite acyclics of one of the E(n)’s, so

we may ask if a similar statement is true for (SpG)ω
(p)

, and we can give a construction when

G = Cpn . The following theorem was proven in the case n = 1 by Balmer and Sanders [7],

and for n > 1 by Barthel, Hausmann, Naumann, Nikolaus, Noel, and Stapleton [9].

Theorem 4.3.8. [7] [9] The thick tensor ideals in (Sp
Cpn

(p)
)c are precisely the subcategories

of the form

{X ∈ (Sp
Cpn

(p)
)c ∶ ΦCpi(X) ∈ ZE(mi)}

where mi ≤mi+j + 1 for all 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − i.
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Therefore for G = Cpn , the above question becomes: for a sequence of natural numbers

m0, . . . ,mn with mi ≤ mi+j + 1 for all 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − i, can we build a

smashing G-spectrum E(m0, . . . ,mn) so that ΦCpi(E(m0, . . . ,mn)) ≃ E(mi)? It is easy to

build E(m0, . . . ,mn) with the stated geometric fixed points since we may assume by induction

that E(m1, . . . ,mn) ∈ SpCpn−1 exists, and then set

E(m0, . . . ,mn) ∶= (ECpn+ ∧ i∗E(m0)) ∨ (ẼCpn ∧ q∗E(m1, . . . ,mn))

where q ∶ Cpn → Cpn−1 is the quotient map. It is not obvious that this spectrum is smashing,

but using the results of Section 4.2, we can build a different representative of the same

Bousfield class that is manifestly smashing.

We do not know if there is a way to construct such spectra that are not split as above.

However, what follows would show that any such construction produces a smashing G-

spectrum, since it would be Bousfield equivalent to the ones we construct. We begin with

the case n = 1.

Proposition 4.3.9. For every pair of natural numbers m0,m1, there is a smashing Cp-

spectrum E(m0,m1) with the property that

⟨ΦCpi(E(m0,m1))⟩ = ⟨E(mi)⟩

for i = 0,1 if and only if m0 ≤m1 + 1.

Proof. Setting E(m0,m1) = (Cp+ ∧E(m0)) ∨ (ẼCp ∧ i∗E(m1)), one checks easily the claim

about Bousfield classes, and thus any model for E(m0,m1) is Bousfield equivalent to this

one. E(m0,m1) is smashing if and only if, for any family {Yi} of E(m0,m1)-locals, the map

φ ∶⋁
i

Yi → Lm0,m1(⋁
i

Yi)

is an equivalence. It always induces an underlying equivalence as iCpe ○ Lm0,m1 ≃ Lm0 ○

i
Cp
e , so E(m0,m1) is smashing if and only if ΦCp(φ) is an equivalence. We claim this is
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true if and only if ΦCp(Lm0,m1(S0)) is E(m1)-local. If ΦCp(Lm0,m1(S0)) were E(m1)-local,

then ΦCp(Lm0,m1(Y )) would be E(m1)-local for any Y , as a module over an E(m1)-local

ring spectrum. But then ΦCp(φ) would be an E(m1)-equivalence between E(m1)-locals.

Conversely, if ΦCp(Lm0,m1(S0)) were not E(m1)-local, then we could not have

⟨ΦCp(Lm0,m1(S0)⟩ = ⟨ΦCp(E(m0,m1))⟩

as ⟨ΦCp(E(m0,m1))⟩ = ⟨E(m1)⟩.

From Section 4.2, we have

LCp+∧E(m0)(X) ≃ F (ECp+, i∗Lm0(S0) ∧X)

LẼCp∧i∗E(m1)
(X) ≃ ẼCp ∧ i∗Lm1(S0) ∧X

It follows that LCp+∧E(m0) ○ LẼCp∧i∗E(m1)
≃ ∗, and hence by a general argument (see Bauer

in [22]), there is a natural homotopy pullback square

Lm0,m1(X) F (ECp+, i∗Lm0(S0) ∧X)

ẼCp ∧ i∗Lm1(S0) ∧X ẼCp ∧ i∗Lm1(S0) ∧ F (ECp+, i∗Lm0(S0) ∧X)

Setting X = S0, and applying ΦCp(−), we have a homotopy pullback square

ΦCp(Lm0,m1(S0)) Lm0(S0)tCp

Lm1(S0) Lm1(Lm0(S0)tCp)

and by the main result of [47], the right hand map is an equivalence if and only if m0 ≤

m1 + 1.

Theorem 4.3.10. For every sequence of natural numbers m0, . . . ,mn satisfying mi ≤mi+j+1

for all 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − i, there is a smashing Cpn-spectrum E(m0, . . . ,mn) with

the property that

ΦCpi(E(m0, . . . ,mn)) ≃ E(mi)

for all 0 ≤ i ≤ n.
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Proof. We proceed by induction on n, and we may assume n > 1 by the previous proposition.

As stated above, it suffices to show there is a spectrum E(m0, . . . ,mn) with the property

that

⟨ΦCpi(E(m0, . . . ,mn))⟩ = ⟨E(mi)⟩

for all i. There are 3 cases to check:

(i)m0 =m1: By induction, we may assume there is a smashing Cpn−1-spectrum E(m1, . . . ,mn)

with the stated properties. Let q ∶ Cpn → Cpn−1 be the usual quotient map. Then E(m0, . . . ,mn) ∶=

q∗E(m1, . . . ,mn) is a smashing Cpn-spectrum and

ΦCpi(q∗E(m1, . . . ,mn)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΦCpi−1(E(m1, . . . ,mn)) i > 0

Φ{e}(E(m1, . . . ,mn)) i = 0

(ii) m0 <m1. Here we set

E(m0, . . . ,mn) ∶= i∗E(m0) ∨ (ẼCpn ∧ q∗E(m1, . . . ,mn))

This is a smashing Cpn-spectrum as in 4.1.13, and we have

ΦCpi(E(m0, . . . ,mn)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E(m0) ∨ΦCpi−1(E(m1, . . . ,mn)) i > 0

E(m0) i = 0

Note however that m0 ≤mi for all i > 0 as mi ≥m1 − 1 for all i > 1, hence ⟨E(m0)∨E(mi)⟩ =

⟨E(mi)⟩.

(iii) m0 =m1 + 1. Since we have assumed n > 1, we can form the smashing Cpn-spectrum

E(m0, . . . ,mn) ∶= N
Cpn+1

Cp
E(m0,m1) ∨ (ẼCpn ∧ q∗E(m1, . . . ,mn))

and we have

ΦCpi(E(m0, . . . ,mn)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΦCp(E(m0,m1))∧k(i) ∨ΦCpi−1(E(m1, . . . ,mn)) i > 0

E(m0)∧pn−1
i = 0

139



where k(i) is some positive integer that won’t affect the Bousfield class. Note that since

m0 =m1 + 1, mi ≥m1 for all i > 0, hence we have

⟨ΦCpi(E(m0, . . . ,mn))⟩ = ⟨E(m1)⟩ ∨ ⟨E(mi)⟩ = ⟨E(mi)⟩

for i > 0, and

⟨Φ{e}(E(m0, . . . ,mn))⟩ = ⟨E(m0)∧p
n−1⟩ = ⟨E(m0)⟩

4.4 Consequences for localizations of N∞-algebras

In this section, we collect some results on Bousfield localizations of N∞-algebras, and we

refer the reader to [12] for the basic definitions in the theory of N∞-algebras. We begin this

section by recalling a surprising theorem of Blumberg and Hill. In this section, MapG(−,−)

will denote the G-space of maps in the category of G-spaces.

Theorem 4.4.1. [12, Theorem 1.4] If O is an N∞-operad, and R is an O-algebra such that

R is cofree, then R is equivalent (as an O-algebra) to a genuine G-E∞ ring.

Proof. R ≃ F (EG+,R), and sinceR is anO-algebra, F (EG+,R) is canonically a MapG(EG,O)-

algebra. Each MapG(EG,On) is a universal space for some family F of graph subgroups of

G ×Σn, and if F ′ is any other such family, a map

EF ′ →MapG(EG,On)

is the same thing as a map

EF ′ ×EG→ On

But EF ′×EG ≃ EG, hence there is always such a map, as EG is initial in the category of such

universal spaces. Therefore MapG(EG,On) is terminal, so it is an EGΣn, and MapG(EG,O)

is equivalent to the terminal N∞-operad.
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This is an extremely useful theorem: many genuine equivariant homotopy types come

naturally as cofree spectra equipped with naive E∞-structures. The Morava E theories En

with their actions by (subgroups of) the Morava stabilizer group, furnished by the Goerss-

Hopkins-Miller theorem [82], come to us this way, and similarly for various equivariant forms

of TMF . For example, the C2-spectrum Tmf1(3) studied by Hill and Meier [40]. These

cofree theories E therefore come equipped with canonical maps of genuine commutative ring

spectra

NTE → E

for finite G-sets T . These maps play an essential role in computations involving the above

spectra, see for example [34, Section 6] in the En-case.

We give a series of generalizations of this result that concern H-cofree G-spectra and

induced localizations. This is a natural direction of generalization as F (EG+,−) is simply

the induced Bousfield localization functor LG+(−). Let E ∈ SpG and let ZE denote the

nonunital symmetric monoidal coefficient system (as in [38]) of E-acyclics. That is, ZE

is the contravariant (pseudo-)functor from the orbit category OG to nonunital symmetric

monoidal categories with values

ZE(G/H) = ZiGHE

We now recall the following theorem of Hill-Hopkins and Gutierrez-White:

Theorem 4.4.2. [38] [33] Let O be an N∞-operad for the group G, and E ∈ SpG. Then

LE(−) preserves O-algebras if and only if for all K ⊂H ⊂ G such that H/K is an admissible

H-set of O,

NH/K(ZE(G/H)) ⊂ ZE(G/H)

Proposition 4.4.3. Let O be an N∞ operad for the group G. If H ⊂ G and E ∈ SpH is such

that LE(−) preserves iGHO-algebras, then LG+∧HE(−) preserves O-algebras.

Proof. Let K ′ ⊂K ⊂ G be such that K/K ′ is an admissible K-set for O, then we must show
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that

NK/K′ZG+∧HE(G/K) ⊂ ZG+∧HE(G/K)

The double coset formula states

iGKG+ ∧H E = ⋁
[g]∈K/G/H

K+ ∧K∩gH i
gH
K∩gH(gE)

hence Z ∈ ZG+∧HE(G/K) ⇐⇒ iKK∩gHZ ∈ ZigH
K∩gH(gE) for all g ∈ G. We therefore assume that

iKK∩gHZ ∈ ZigH
K∩gH(gE), and we must show that iKK∩gHN

K/K′(Z) ∈ ZigH
K∩gH(gE), but we have

iKK∩gHN
K/K′(Z) = ⋀

[h]∈(K∩gH)/K/K′
NK∩gH

(K∩gH)∩h(K′)i
h(K′)

(K∩gH)∩h(K′)
(h(iKK′Z))

This smash product is in ZigH
K∩gH(gE) if any of its factors is, hence we may take h = e so that

it suffices to show that

NK∩gH
(K∩gH)∩K′iK

′

(K∩gH)∩K′(iKK′Z) = N (K∩gH)/((K∩gH)∩K′)(iKK∩gHZ) ∈ ZigH
K∩gH(gE)

Since O admits K/K ′, O admits (K ∩g H)/((K ∩g H) ∩K ′) since the admissible sets for O

are closed under restriction in this way. If we knew then that LgE preserves iGgHO-algebras,

4.4.2 would guarantee that ZigH
K∩gH(gE) is closed under this norm.

The fact that

LE(−) preserves iGHO-algebras Ô⇒ LgE(−) preserves iGgHO-algebras

follows from the fact that the admissible sets for O are closed under conjugacy, along with

the observations

NK/K′
Z ∧ iHKE ≃ ∗ ⇐⇒ N

gK/g(K′)(gZ) ∧ igHgK(gE) ≃ ∗

Z ∧ iHKE ≃ ∗ ⇐⇒ gZ ∩ igHgK(gE) ≃ ∗

which follow from the fact that g(−) ∶ SpH → Sp
gH is a symmetric monoidal equivalence of

categories.
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Corollary 4.4.4. If H ⊂ G, and E ∈ SpH is such that LE(−) preserves H-commutative

rings, then LG+∧HE(−) preserves G-commutative rings.

As in 4.4.1, we will see that the situation is actually better than this: induced localizations

automatically upgrade the available norms for an N∞-algebra, and we make this precise using

the results of Section 4.2. We may give EFH the trivial Σn-action, and as such it becomes

the universal G ×Σn-space for the family

FH×Σn ∶= {Λ ⊂ G ×Σn : pr1(Λ) ∈ FH}

where pr1 ∶ G × Σn → G is the projection onto the first factor. It is easy to check that

if X is any G × Σn-space, then if we give the G-space MapG(EFH ,X) a G × Σn-action

by postcomposing with the action of Σn on X, this is isomorphic as a G × Σn-space to

MapG×Σn(EFH ,X), where EFH has a trivial Σn action as above. If O is any N∞-operad for

the group G, it follows that MapG(EFH ,O) is as well. Moreover, if R is an algebra over O,

then F (EFH+,R) is an algebra over MapG(EFH ,O). 4.2.7 and 4.4.3 together give:

Corollary 4.4.5. If R ∈ SpG, E ∈ SpH , and O is an N∞ operad for the group G such that

R is an O-algebra and LE preserves iGHO-algebras, then LG+∧HE(R) is a MapG(EFH ,O)-

algebra.

In the situation of the corollary, we find that R acquires more norms after localizing at

G+ ∧H E since the collection of admissible sets for MapG(EFH ,O) contains that of O. We

determine now exactly which new norms it acquires. If O is any N∞-operad for the group

H, then the coinduced operad FH(G,O) is an N∞-operad for the group G ( [12], 6.14), and

we have the following:

Proposition 4.4.6. MapG(EFH ,O) ≃ FH(G, iGHO) as N∞-operads.

Proof. We have a zig zag of maps of operads

MapG(EFH ,O) MapG(EFH ,O) × FH(G, iGHO) FH(G, iGHO)
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given by the projection maps. It follows that if, for all n ≥ 0, MapG(EFH ,O)n and

FH(G, iGHO)n are universal G ×Σn-spaces for the same family of subgroups, then both pro-

jections are equivalences.

Let Un be the category of universal (G×Σn)-spaces EF for F a family of graph subgroups

of G×Σn. It is an immediate consequence of Elmendorf’s theorem that Ho(Un) is equivalent

to the poset of families of graph subgroups of G × Σn, via inclusion. Therefore, if E ∈ Un,

then E = EF is a universal G ×Σn-space for the family of subgroups

F = ⋃
F ′ :

∃EF ′→E

F ′

given by the union of families F ′ having the property that there is a G×Σn-equivariant map

EF ′ → E. For MapG(EFH ,On), by adjunction, there is such a map if and only if there is a

map

EF ×EFH → On

Since EF ×EFH ≃ E(F ∩FH×Σn), this happens if and only if

F ∩FH×Σn ⊂ FOn

One may show that FH(G, iG×Σn
H×Σn

On) ≅ FH×Σn(G×Σn, i
G×Σn
H×Σn

On) so that there is a G×Σn-map

EF → FH(G, iG×Σn
H×Σn

On)

if and only if there is a map

iG×Σn
H×Σn

EF → iG×Σn
H×Σn

On

by adjunction. One checks easily that these are the following universal H ×Σn-spaces

iG×Σn
H×Σn

EF = E(Γ ⊂H ×Σn : Γ ∈ F)

iG×Σn
H×Σn

On = E(Γ ⊂H ×Σn : Γ ∈ On)

Hence the map above exists if and only if

{Γ ⊂H ×Σn : Γ ∈ F} ⊂ FOn
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Since FOn is a family and in particular closed under subconjugates, this happens if and only

if

F ∩ {Γ ⊂ G ×Σn : Γ is subconjugate to H ×Σn} ⊂ FOn

It therefore suffices to observe that

FH×Σn = {Γ ⊂ G ×Σn : Γ is subconjugate to H ×Σn}

Corollary 4.4.7. For any K ⊂ G, a K-set T is admissible for MapG(EFH ,O) if and only

if for all g ∈ G, igKg−1

H∩gKg−1
gT is admissible for O. In particular, if iGHO is genuine H-E∞, then

MapG(EFH ,O) is genuine G-E∞.

Proof. It is clear that if K ⊂ H, and T is a K-set, then iGHO admits T iff O admits T . Now

we apply the previous proposition and [12, 6.16]

The following is the most direct generalization of 4.4.1 above, in the case where iGHO is

genuine H-E∞.

Corollary 4.4.8. Let R ∈ SpG be an algebra over an N∞-operad O such that iGHO is a

genuine H-E∞-operad, and let E ∈ SpH . If LE(−) preserves H-commutative rings, then

LG+∧HE(R) is a G-commutative ring. In particular, if R is an O-algebra such that iGHO is

genuine H-E∞, then F (EFH+,R) is a G-commutative ring.

Proof. Note that F (EFH+,R) ≃ LG/H+(R) ≃ LG+∧HS0(R), so that the second assertion follows

from the first. For the first assertion, we simply combine 4.4.5 and 4.4.7.

Example 4.4.9. LEG(m)(−) sends O-algebras to G-commutative rings for all n and m.

4.5 Restriction of idempotents along a quasi-Galois extension

We digress from categories of G-spectra to highlight the extent to which the results of

Section 4.2.3 may be generalized to other settings in which Bousfield localization is possible.

This is motivated by the following theorem of Balmer, Dell’Ambroglio, and Sanders:
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Theorem 4.5.1. [5, Theorem 1.1] For H ⊂ G a subgroup, there is an equivalence of tt-

categories

Ho(SpH) ≃ ModHo(SpG)(F (G/H+, S
0))

where the latter is the category of modules in Ho(SpG) over the ring spectrum F (G/H+, S0).

Under this equivalence, the functor iGH(−) corresponds to extension of scalars along the unit

map S0 → F (G/H+, S0), and G+ ∧H (−) ≃ FH(G+,−) corresponds to restriction of scalars.

Mathew, Noel, and Naumann upgraded this to an equivalence of symmetric monoidal

∞-categories [66]

SpH ≃ModSpG(F (G/H+, S
0))

and studied the extent to which a commutative algebra A in a presentable, symmetric

monoidal stable ∞-category (C,⊗,1) exhibited categorical properties similar to those seen

in equivariant homotopy theory with A = F (G/H+, S0). In our context, the analogy suggests

that perhaps a smashing A-module M will pull back to an object in C whose Bousfield lo-

calization functor becomes smashing after completion at A. That is, if η ∶ 1 → A is the unit

map of A, ifM ∈ModC(A) determines a smashing localization in ModC(A), following 4.2.21,

we expect a formula

Lη∗M(−) = LA(Lη∗M(1)⊗ −)

in C. However, 4.2.25 tells us that, even in the motivating example S0 → F (G/H+, S0),

we need H to be normal for such a formula to hold. Hence we are led to ask that η be a

quasi-Galois extension.

4.5.1 Background on stable ∞-categories and quasi-Galois extensions.

We review what is needed to establish the desired localization formulae for a quasi-

Galois extension. We use the language of ∞-categories following [60] and closely follow the

discussion in Section 1 of [66], where more detail can be found. In all that follows, we will let
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(C,⊗,1) be a presentable, symmetric monoidal stable ∞-category in which −⊗− commutes

with colimits in each variable.

Definition 4.5.2. Let M ∈ C. We let ZM be the full subcategory of C consisting of those

Z ∈ C such that Z ⊗M ≃ ∗. We let LM denote the full subcategory of C consisting of those

Y ∈ C such that the space MapC(Z,Y ) is contractible for all Z ∈ ZM .

It follows formally from [60, Section 5.5] that LM is a presentable stable ∞-category, and

the inclusion LM ↪ C admits a left adjoint, LM(−). Moreover, by [59, 2.2.1.9], LM inherits

the structure of a symmetric monoidal ∞-category so that LM ∶ C → LM is symmetric

monoidal. The tensor product in LM is then necessarily given by the formula

LM(X)⊗̂LM(Y ) ∶= LM(X ⊗ Y )

With this in place, the discussion in Section 2 may be repeated in this setting mutatis mutan-

dis. In particular, we may use smashing localizations and tensor idempotents interchangeably

(see [59, Section 6.3] or [25, Section 3] for more details).

Suppose now we have an object A ∈ CAlg(C) - this induces an Ind-Res adjunction

C =ModC(1)

ModC(A)

η∗ η∗

ModC(A) is a presentable, symmetric monoidal stable∞-category, η∗ is a symmetric monoidal

functor, and the adjunction η∗ ⊣ η∗ satisfies the projection formula

N ⊗ η∗(M) ≃ η∗(η∗N ⊗AM)

(see [66, Section 5.2]). Under the assumption that A is dualizable in C, Mathew, Naumann,

and Noel deduce the following description of LA.
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Theorem 4.5.3. [66, Theorem 2.30] If A is dualizable in C, the functor η∗ descends to an

equivalence of symmetric monoidal ∞-categories

LA ≃ Tot(ModC(A) ModC(A⊗A) ⋯)

In our motivating example of A = F (G/H+, S0) ∈ CAlg(Sp) for H ⊲ G, the double coset

formula allows us to identify the simplicial object on the right hand side as the cobar complex

computing (SpH)h(G/H). This generalizes to the following situation:

Definition 4.5.4. Let G be a finite group, R ∈ CAlg(C), and A ∈ Fun(BG,CAlg(C)R/).

Consider the diagram in CAlg(C).

R A

A A⊗R A

∏
g∈G

A

∆tw

∆

φ

where πg ○ ∆tw = g ∶ A → A. We say that R → A is a quasi-Galois extension if φ is an

equivalence.

Remark 4.5.5. If we required additionally that the morphism R → AhG be an equivalence,

this would be the usual definition of a Galois extension, due to Rognes [83]. This terminology

is used in [75] where quasi-Galois extensions are studied in a tt-geometry context.

As before, we will take R = 1, and we record the following immediate consequence of

4.5.3:

Corollary 4.5.6. If A is dualizable in C, and η ∶ 1 → A is a quasi-Galois extension, the

functor η∗ descends to an equivalence of symmetric monoidal ∞-categories

LA ≃ (ModC(A))hG

Remark 4.5.7. If η were a Galois extension, the dualizability condition on A would be auto-

matic [83, 6.2.1].
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When η is a quasi-Galois extension, the projection formula gives the following decompo-

sition, of which the double-coset formula for iGH(G+ ∧H −) is a special case.

Lemma 4.5.8. For M ∈ ModC(A),

η∗η
∗M =⊕

g∈G

gM

4.5.2 Smashing A-modules

Our desired localization formulae are of the form

L(−) = LA(L(1)⊗ −)

By definition of the symmetric monoidal structure in LA, producing a localization functor

L(−) on C given by such a formula is equivalent to producing a smashing localization in LA.

Corollary 4.5.6 tells us that smashing localizations in LA are the same thing as smashing

localizations in (ModC(A))hG. This allows us to produce smashing localizations in LA from

smashing localizations in ModC(A) via norm functors.

Construction 4.5.9. Let (D,⊗,1) be a presentable, symmetric monoidal ∞-category with

G-action (e.g. ModC(A) as above). There is a symmetric monoidal functor

N ∶ D → DhG

such that the composite

D NÐ→ DhG ↪D

is given by the functor

M ↦⊗
g∈G

gM

Remark 4.5.10. There is a right adjoint

Fun(BG,SymMon∞-Cat)→ G-SymMon∞-Cat
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to the forgetful functor which sends (D,⊗,1), a presentable, symmetric monoidal∞-category

with G-action, to the G-symmetric monoidal ∞-category D(G/H) = DhH , with norm map

D(G/e) → D(G/G) as in 4.5.9. This is a higher algebra analog of the functor that sends

a commutative ring with G-action to its fixed-point Tambara functor. An account of this

construction is to appear in [72].

This construction appears in the context of the symmetric monoidal G-categories of

Guillou, May, Merling, and Osorno (see [31, 3.7]), the normed symmetric monoidal categories

of Rubin (see [84, 3.7]), and the symmetric monoidal mackey functors of Hill-Hopkins (see [38,

2.6]).

By use of N , we may therefore send an idempotent e in ModC(A) to an idempotent N(e)

in LA. This determines some smashing localization in LA, and using 6.8, we may identify its

corresponding Bousfield class in terms of that of e. We have the following:

Theorem 4.5.11. Suppose (C,⊗,1) and A are as above. In particular, assume η ∶ 1 → A

is a quasi-Galois extension and A is dualizable in C. If M ∈ ModC(A) is smashing, then we

have the formula in C:

Lη∗M(−) = LA(Lη∗M(1)⊗ −)

Proof. For X ∈ C, the composite

X → Lη∗M(1)⊗X → LA(Lη∗M(1)⊗X)

becomes an equivalence after applying − ⊗ η∗M . This is clear for the first map, and for the

second map, for any Y ∈ C, we have a commutative diagram

Y ⊗ η∗M LA(Y )⊗ η∗M

η∗(η∗Y ⊗AM) η∗(η∗(LA(Y ))⊗AM)

≃ ≃

by the projection formula. The bottom arrow is an equivalence because η∗Y → η∗(LA(Y ))

is an equivalence by definition. It suffices now to show that LA(Lη∗M(1)⊗X) is η∗M -local

in C.
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Suppose we knew that LA(η∗M) determined a smashing Bousfield class in LA. Then if

Z ∈ Zη∗M , we have LA(Z)⊗̂LA(η∗M) ≃ ∗, and

MapC(Z,LA(Lη∗M(1)⊗X)) ≃MapLA(LA(Z), LA(Lη∗M(1))⊗̂LA(X))

Since LA(η∗M)-locals form a ⊗̂-ideal in LA by assumption, it would therefore suffice to show

that LA(Lη∗M(1)) is LA(η∗M)-local in LA. If LA(Z ′) ∈ LA is an LA(η∗M)-⊗̂-acyclic, then

MapLA(LA(Z
′), LA(Lη∗M(1))) ≃MapC(Z ′, Lη∗M(1)) ≃ ∗

The first equivalence is by adjunction and the fact that Lη∗M ⊂ LA, as ZA ⊂ Zη∗M by the

projection formula. For the second, Z ′ ⊗ η∗M is A-local, as an A-module, hence

Z ′ ⊗ η∗M ≃ LA(Z ′ ⊗ η∗M) ≃ LA(Z ′)⊗̂LA(η∗M) ≃ ∗

We now show that LA(η∗M) determines a smashing Bousfield class in LA. Let eM , fM ∈

ModC(A) denote the left and right idempotents corresponding to M , respectively. If N(−)

is the functor in 4.5.9, we have that

ker(−⊗̂cofib(N(eM)→ 1))

is a smashing ideal in LA. It suffices to show that it coincides with ker(−⊗̂LA(η∗M)). Since
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η∗ is conservative on LA, we have

Z⊗̂cofib(N(eM)→ 1) ≃ ∗ ⇐⇒ η∗(Z⊗̂cofib(N(eM)→ 1)) ≃ ∗

⇐⇒ η∗(Z)⊗A cofib(η∗N(eM)→ 1) ≃ ∗

⇐⇒ η∗(Z)⊗A cofib(⊗
g∈G

geM → 1) ≃ ∗

⇐⇒ η∗(Z)⊗A cofib(e ⊕
g∈G

gM → 1) ≃ ∗

⇐⇒ η∗(Z)⊗A f ⊕
g∈G

gM ≃ ∗

⇐⇒ η∗(Z)⊗A⊕
g∈G

gM ≃ ∗

⇐⇒ η∗(Z)⊗A η∗η∗M ≃ ∗

⇐⇒ η∗(Z ⊗ η∗M) ≃ ∗

⇐⇒ Z⊗̂η∗M ≃ ∗

The third equivalence is by definition of N(−), the fourth and sixth follow as in 4.1.13, and

the seventh is 4.5.8.

Remark 4.5.12. When C = SpG and A = F (G/H+, S0) for H ⊲ G, this recovers 4.2.21.

Moreover, the description of LA(−) in this case may be generalized: it follows from [66,

Proposition 2.21] that in the situation of 4.5.11, we have the formula

LA(Y ) ≃ (Y ⊗A)hG ≃ F (D(A), Y )hG ≃ F (D(A)hG, Y )

and so the formula in 4.5.11 may be made more explicit:

Lη∗M(X) ≃ F (D(A)hG, Lη∗M(1)⊗X)

Remark 4.5.13. We may derive an analogous formula for a general quasi-Galois extension

η ∶ R → A in C such that A is dualizable in ModC(R): a smashing R-linear A-module M ∈

ModModC(R)(A) determines a smashing localization in the category of A-locals in ModC(R)

corresponding to the Bousfield class of η∗M . The same proofs work since R is the unit in

ModC(R).
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We have also in this setting a necessary and sufficient condition for η∗M to be smashing

in C, i.e. a generalization of 4.2.20. In [66], the role of the geometric fixed points functor is

generalized to this setting as follows: consider the cofiber sequence

D(A) D(η)ÐÐ→ 1
aAÐ→ C(A)

Define

UA ∶= colim(1 aAÐ→ C(A) aAÐ→ C(A)⊗2 aAÐ→ ⋯)

Then UA is a right idempotent in C, and for any X ∈ C, there is a homotopy pullback square

X X ⊗UA

LA(X) LA(X)⊗UA
Proposition 4.5.14. In the situation of 4.5.11, η∗M is smashing in C if and only if

Lη∗M(1)⊗UA ≃ ∗.

Proof. If η∗M is smashing, then Lη∗M(1) ⊗ UA ≃ Lη∗M(UA), but ZA ⊂ Zη∗M , and in the

cofiber sequence

D(A)⊗A→ A→ C(A)⊗A

the first map splits via the map A→ D(A)⊗A adjoint to the multiplication map A⊗A→ A.

Therefore the map A→ C(A)⊗A is null, and so

UA ⊗A ≃ colim(A→ C(A)⊗A→ C(A)⊗2 ⊗A→ ⋯) ≃ ∗

Conversely, suppose Lη∗M(1)⊗UA ≃ ∗, we will show that Lη∗M(1)⊗X ∈ Lη∗M for all X ∈ C.

As above, we have a pullback square

Lη∗M(1)⊗X Lη∗M(1)⊗X ⊗UA

LA(Lη∗M(1)⊗X) LA(Lη∗M(1)⊗X)⊗UA

By 4.5.11, we may identify the bottom row with the map Lη∗M(X) → Lη∗M(X) ⊗ UA. By

assumption, Lη∗M(1)⊗UA ≃ ∗, so Lη∗M(X)⊗UA is contractible as a module over Lη∗M(1)⊗

UA. Therefore the left hand arrow is an equivalence and the target is η∗M -local.
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Corollary 4.5.15. In the situation of 4.5.11, η∗M is smashing in C if and only if Lη∗M(1)

is in the thick subcategory of C generated by A.

Proof. This follows immediately from [66, Theorem 4.19].

Example 4.5.16. Let H ⊲ G be a closed normal subgroup of finite index in a compact Lie

group G. If E ∈ SpH is smashing, then

LG+∧HE(X) = F (EFH+, LE(S0) ∧X)

for all X ∈ SpG.

Proof. In [66, pg. 29], it is noted that the the analog of 4.3.1 (and its ∞-categorical refine-

ment) hold in this setting, and the formula now follows from 4.5.12.

Example 4.5.17. In fact, our above arguments may be used to show the analogous version

of 4.2.21 for induced localizations holds for any of the equivariant tt-categories studied in [5].
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Chapter 5

COFREENESS IN REAL-ORIENTED HOMOTOPY THEORY

In the previous chapter, we investigated analogues of the Ravenel conjectures in C2n-equivariant

homotopy theory, where Real-oriented homotopy theory played the role of chromatic homo-

topy theory. Our main findings showed that many of the same theorems hold, but one has

to pass to cofree G-spectra. In this chapter, we clarify the role of cofreeness in the context

of Real-oriented homotopy theory by generalizing a result of Hu-Kriz. Hu and Kriz showed

in [48] that Real bordism theory - MUR - is cofree, i.e. the map

MUR → F (EC2+,MUR)

is an equivalence of C2-spectra. We generalize this to the norms of MUR, proving that, for

all n ≥ 1, NC2n

C2
MUR is cofree, i.e. the map

NC2n

C2
MUR → F (EC2n+,N

C2n

C2
MUR)

is an equivalence of C2n-spectra. The equivariant spectra NC2n

C2
MUR play a central role

in the solution to the Kervaire Invariant One problem by Hill, Hopkins, and Ravenel [39].

Their detecting spectrum Ω is the homotopy fixed point spectrum of a localization ΩO ∶=

D−1NC8

C2
MUR of NC8

C2
MUR. An essential piece of their argument is their homotopy fixed point

theorem [39, 1.10], which states that this homotopy fixed point spectrum coincides with the

genuine fixed point spectrum, i.e. that ΩO is cofree. Our result shows that this holds even

before localization away from D.

We use the above cofreeness result to give a new, more conceptual proof of a fundamental

and deep result in equivariant homotopy theory, the Segal Conjecture for C2:

Theorem 5.0.1. For any bounded below spectrum X, the Tate diagonal

X → (NC2
e (X))tC2
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is a 2-complete equivalence.

See Section 3.4 for more details on the relationship between the Tate diagonal and the

Segal conjecture for C2. Lin’s proof involves a difficult calculation of a continuous Ext group

ÊxtA(H∗(RP∞−∞;F2);F2)

where A is the Steenrod algebra. Nikolaus and Scholze showed, however, that 5.0.1 follows

formally for all X bounded below from the case X = HF2. Hahn and Wilson [35] used this

to show that 5.0.1 can be established by analysis of the descent spectral sequence for the

map

NC2
e HF2 →HF2

which reduces to a continuous Ext group calculation over a much smaller polynomial coal-

gebra F2[x].

We give a proof of Lin’s Theorem that involves essentially no homological algebra and pro-

ceeds from a chromatic approach. Essential to our proof is the identification ΦC2(NC4

C2
BPR) ≃

NC2
e HF2. In [67], Meier, Shi, and Zeng use this identification to deduce differentials in the

homotopy fixed point spectral sequence of NC2
e HF2 from differentials in the slice spectral

sequence of NC4

C2
BPR, thus establishing a connection between the Segal Conjecture and the

HHR slice theorem. We make this connection precise by proving the following:

Theorem 5.0.2. For any n > 1, the cofreeness of NC2n

C2
MUR is equivalent to Lin’s Theorem

together with the cofreeness of MUR.

Theorem 5.0.2 is a formal consequence of the Nikolaus-Scholze Tate orbit lemma ( [74],

I.2.1), and this gives a straightforward proof of the cofreeness of NC2n

C2
MUR using Lin’s

Theorem and the result of Hu and Kriz. On the other hand, we give an independent proof of

the cofreeness of NC2n

C2
MUR that works for all n > 0, following a chromatic approach which

depends only on the HHR slice theorem (see Section 3.3).
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We give a sketch here of this proof in the case n = 1. The idea is that BPR[vi−1] is cofree

for formal reasons, so one can take an approach via local cohomology and form cartesian

cubes
L̃2BPR BPR[v1

−1]

BPR[v2
−1] BPR[(v1v2)−1]

BPR[v3
−1] BPR[(v2v3)−1]

L̃3BPR BPR[v2
−1]

BPR[(v1v3)−1] BPR[(v1v2v3)−1]

BPR[v1
−1] BPR[(v1v2)−1]

and so on, and L̃nBPR is cofree for all n. Applying the slice tower to each vertexBPR[(vi1⋯vij)−1],

one forms a cartesian cube in filtered C2-spectra, and the limit term gives a modified slice

filtration of L̃nBPR. It is then a formal consequence of the HHR slice theorem that, taking

the limit in n, one recovers the slice tower of BPR.

Remark 5.0.3. Our results should shed light on the spectral sequences studied in Meier, Shi,

and Zeng [67]. In particular, the map from the slice spectral sequence of NC4

C2
BPR to its

HFPSS (see Remark 3.3.4) is an isomorphism below a line of slope 1 (see [89]). The slice

spectral sequence vanishes above a line of slope 3, but there are many classes above this line

in the HFPSS. Since NC4

C2
BPR is cofree, the map between them must give an isomorphism

on their E∞-pages, so there must be some pattern of differentials killing all the classes above

this line in the HFPSS.

In Section 5.1, we show that the cofreeness of NC2n

C2
MUR follows formally from (and

is equivalent to) the Hu-Kriz n = 1 case together with Lin’s Theorem. This is the most

direct way to our cofreeness result, using these known results. In Section 5.2, we withhold
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knowledge of these theorems and give a different proof - via chromatic hypercubes - that

NC4

C2
BPR is cofree. In turn, this result implies the n = 1 case and Lin’s theorem, which then

gives the result for n > 2 by the same induction used in Section 5.1. We use the notation

MU ((G)) and BP ((G)) to denote NG
C2
MUR and NG

C2
BPR respectively, as in HHR.

5.1 Cofreeness and gluing maps

5.1.1 Cofreeness

We begin by reviewing the notion of cofreeness for a genuine G-spectrum (see Remark

3.1.11).

Proposition 5.1.1. For X ∈ SpG, the following are equivalent

1. X → F (EG+,X) is an equivalence of G-spectra, i.e. X is a cofree G-spectrum as in

Remark 3.1.11.

2. XH →XhH is an equivalence of spectra for all H ⊂ G.

3. X is G+-local.

Proof. For 1 ⇐⇒ 3, it suffices to show that LG+(X) = F (EG+,X). The map

X → F (EG+,X)

becomes an equivalence after smashing with G+ by the Frobenius relation, and the target is

G+-local because if Z ∧G+ ≃ ∗, then

[Z,F (EG+,X)]G = [Z ∧EG+,X]G = 0

as EG+ is in the localizing subcategory generated by G+. 1 ⇐⇒ 2 follows from the fact

that the fixed point functors (−)H are jointly conservative, and

iGH(F (EG+,X)) = F (EH+, i
G
HX)
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as can be seen from the more general statement

iGH(LE(X)) = LiGHE(i
G
HX)

(see Proposition 4.2.2).

Definition 5.1.2. We say a G-spectrum X is cofree if any of the equivalent conditions in

5.1.1 hold.

Corollary 5.1.3. The category of cofree G-spectra is closed under homotopy limits.

Proof. This is true of any category of E-locals.

We will make use of the slice filtration on G-spectra, as in Section 3.3. Let X ≥ n denote

that a G-spectrum is slice ≥ n, i.e. X is slice (n−1)-connected. We need the following useful

lemma:

Lemma 5.1.4. Suppose {Xi}i∈N is a family of G-spectra such that, for all n ∈ Z, all but

finitely many Xi have the property that Xi ≥ n. Then the canonical map

⋁
i

Xi →∏
i

Xi

is an equivalence.

Proof. It suffices to show that, for all k ∈ Z, the map of Mackey functors

⊕
i

πk(Xi) ≅ πk(⋁
i

Xi)→ πk(∏
i

Xi) ≅∏
i

πk(Xi)

is an isomorphism. This follows immediately from the observation that πk(Xi) = 0 for all

but finitely many i. Indeed, by [39, 4.40], if Y ≥ n, then πk(Y ) = 0 for k < ⌊n/∣G∣⌋ when n ≥ 0

and for k < n when n ≤ 0.

Proposition 5.1.5. If MUR is cofree, then MU∧n
R is cofree for all n ≥ 1, and similarly for

BP ∧n
R .

159



Proof. We proceed by induction on n. Since MU
∧(n−1)
R is Real-oriented, we have

MU∧n
R =MU

∧(n−1)
R [b1, b2, . . .] = ⋁

m∈M

S
∣m∣
2
ρ ∧MU

∧(n−1)
R

where M is a monomial basis of Z[b1, b2, . . .], applying Proposition 3.2.8. By the lemma, the

canonical map

⋁
m∈M

S
∣m∣
2
ρ ∧MU

∧(n−1)
R → ∏

m∈M

S
∣m∣
2
ρ ∧MU

∧(n−1)
R

is an equivalence, as MU
∧(n−1)
R ≥ 0 and Skρ ≥ 2k, so that Skρ ∧MU

∧(n−1)
R ≥ 2k by [39, 4.2.6].

This completes the proof, as the category of cofree C2-spectra is closed under limits and

smashing with a dualizable C2-spectrum, hence the target is cofree.

5.1.2 Gluing maps

We set up an inductive argument to prove that NC2n

C2
MUR is cofree. To fix notation, we

use ΦC
pk to denote the functor SpCpn → Sp and Φ̃C

pk to denote the functor SpCpn → SpCpn−k ,

so that i
C
pn−k

e ○ Φ̃C
pk = ΦC

pk . Nikolaus and Scholze use a result of Hesselholt and Madsen [36,

2.1] along with their Tate orbit lemma, to show the following.

Proposition 5.1.6. [74, Corollary II.4.7] If X ∈ SpCpn has the property that ΦC
pkX ∈ Sp

is bounded below for all 0 ≤ k < n, there is a homotopy limit diagram
XCpn ΦCpnX

(Φ̃Cpn−1X)hCp (Φ̃Cpn−1X)tCp

(Φ̃Cp2X)hCpn−2 ⋯

(Φ̃CpX)
hCpn−1

((Φ̃CpX)tCp)
hCpn−2

XhCpn (X tCp)
hCpn−1

Theorem 5.1.7. Let Y be a bounded below Cp-spectrum. If Y ∧pk is a cofree Cp-spectrum

for all 0 ≤ k < n, then NCpn

Cp
Y is cofree.
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Proof. Set X ∶= NCpn

Cp
Y . We proceed by induction on n, with the base case n = 1 being

tautological. For all 1 ≤ k < n,

i
Cpn

C
pn−k

X = NC
pn−k

Cp
(Y ∧pk)

is cofree by induction, so it suffices to show the map XCpn →XhCpn is an equivalence. Since

Y is bounded below, so is X, and this map is an equivalence if all of the short vertical maps

in 5.1.6 are equivalences. Each such map is of the form

(f)hCpn−k ∶ (Φ̃C
pkX)

hC
pn−k

→ ((Φ̃C
pk−1X)tCp)

hC
pn−k

for k > 0, which is induced by the map in SpCpn−k

f ∶ Φ̃C
pkX → (Φ̃C

pk−1X)tCp

It therefore suffices to show that f is an equivalence of Borel Cpn−k-spectra for all k > 0,

which by definition is simply an underlying equivalence. The underlying map is the natural

map

ΦCp(iCpn−k+1

Cp
Φ̃C

pk−1X)→ (iCpn−k+1

Cp
Φ̃C

pk−1X)
tCp

so it suffices to show i
C
pn−k+1

Cp
Φ̃C

pk−1X is a cofree Cp-spectrum. When k = 1, we have

i
C
pn−k+1

Cp
Φ̃C

pk−1X ≃ Y ∧pn−1

and for k > 1, one has

i
C
pn−k+1

Cp
Φ̃C

pk−1X ≃ iCpn−k+1

Cp
(NC

pn−k+1

e (ΦCpY )) ≃ NCp
e (ΦCp(Y ∧pn−k))

using the identification Φ̃C
pkX ≃ NC

pn−k
e (ΦCpY ) (see [67, Theorem 2.2]). The Cp-spectrum

N
Cp
e ΦCp(Y ∧pn−k) is cofree by the Segal Conjecture for Cp: since Y ∧pn−k is bounded below and

cofree,

ΦCp(Y ∧pn−k) ≃ (Y ∧pn−k)tCp

is bounded below and p-complete.
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Remark 5.1.8. This result has various converses. For example, if Y is a bounded below

Cp-spectrum, then N
C
pk

Cp
Y is cofree for all 1 ≤ k ≤ n if and only if Y ∧pk is a cofree Cp-

spectrum for all 0 ≤ k < n. The other direction follows because if N
C
pk+1

Cp
Y is cofree, then

Y ∧pk = iCpk+1

Cp
N
C
pk+1

Cp
Y is also cofree.

If Y is also a ring spectrum, then the direct converse of 5.1.7 is true: NCpn

Cp
Y is cofree

if and only if Y ∧pk is a cofree Cp-spectrum for all 0 ≤ k < n. This follows because Y ∧pk is a

retract of Y ∧pn−1 = iCpnCp
N
Cpn

Cp
Y in this case.

Corollary 5.1.9. For all n ≥ 1, MU ((C2n)) is cofree, and similarly for BP ((C2n)).

Proof. MUR is bounded below, so this follows immediately from 5.1.5, the Hu-Kriz n = 1

case, and the theorem.

We have shown that the case n = 1, due to Hu and Kriz, along with Lin’s theorem, implies

that MU ((C2n)) is cofree for all n ≥ 1. The argument can be reversed to point to another

proof of Lin’s theorem, namely:

Proposition 5.1.10. For any n > 1, the cofreeness of MU ((C2n)) implies both Lin’s theorem

and the n = 1 case.

Proof. If for any n > 1, MU ((C2n)) is cofree, then a smash power of BP ((C4)) is cofree, and

it follows that BP ((C4)) is cofree, as a retract; similarly for BPR and therefore for its smash

powers by 5.1.5. In this case, the limit diagram in 5.1.6 is as follows:

(BP ((C4)))C4 ΦC4(BP ((C4)))

(Φ̃C2BP ((C4)))hC2 (Φ̃C2BP ((C4)))tC2

(BP ((C4)))hC4 ((BP ((C4)))tC2)hC2

The lefthand vertical arrow is an equivalence by assumption, and the middle arrow is an

equivalence since BPR ∧ BPR is cofree. We find that the righthand vertical map is an
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equivalence, and this is the Tate diagonal HF2 → (NC2
e HF2)tC2 , which is an equivalence if

and only if Lin’s theorem holds, by [74, III.1.7].

5.2 Localizations of norms of Real bordism theory

In this section, we give a proof that NC2n

C2
MUR is cofree that is independent of both Lin’s

theorem and the Hu-Kriz n = 1 case. Our strategy is to show that BP ((C4)) is cofree by

mimicking the argument sketched in the introduction to show that BPR is cofree. By 5.1.10,

this implies Lin’s theorem as well as the cofreeness of MUR, which gives the cases n > 2 by

5.1.7.

To construct hypercubes analogous to those for BPR, we need a family of elements in

πC4

☀
BP ((C4)) to play the role of the vi’s, and we need BP ((C4)) to become cofree upon inverting

these elements. Following the discussion in [39, Section 6], in πu∗(BP ((C4))) = π∗(BP ∧BP ),

there are classes {ti}i≥1 with the property that

πu∗(BP ((C4))) = Z(2)[ti, γ(ti) : i ≥ 1]

as a C4-algebra, where γ is the generator of C4 and γ2(ti) = −ti. The restriction map

πC2
∗ρ2

(BP ((C4)))→ πu2∗(BP ((C4)))

is an isomorphism. Lifting the classes ti along this map, we have classes

ti ∈ πC2

(2i−1)ρ2
(BP ((C4)))

and using the C4-commutative ring structure on MU
((C4))

(2)
, this gives classes

NC4

C2
(ti) ∈ πC4

(2i−1)ρ4
(BP ((C4)))

Inverting these classes, we may form hypercubes whose limits

L̃nBP
((C4)) ∶= holim{i1,...,ij}∈P0([n])(BP ((C4))[NC4

C2
(ti1⋯tij)−1])
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are easily shown to be cofree. It suffices then to establish that the natural map

BP ((C4)) → holimn(L̃nBP ((C4)))

is an equivalence. We determine the slice towers of each of the vertices

BP
((C4))

i1,...,ij
∶= BP ((C4))[NC4

C2
(ti1⋯tij)−1]

which determines a filtration on L̃nBP ((C4)). We therefore analyze the above map in the

category of filtered C4-spectra. We show that the associated graded of the filtration on

L̃nBP ((C4)) splits as

(HZ(2) ∧ Ŵ )⊕Xn

where (HZ(2) ∧ Ŵ ) is the associated graded of the slice filtration on BP ((C4)), and the map

Xn → Xn−1 is null, from which the result follows.

In Section 5.2.1, we begin with some general results on hypercubes that will allow us to

deduce the associated graded of the filtration on L̃nBP ((C4)). In Section 5.2.2, we show that

the functor sending a G-spectrum to its slice tower commutes with filtered colimits, allowing

us to easily deduce the slice tower of BP ((C4))

i1,...,ij
from that of BP ((C4)). We finish in Section

5.2.3 by showing the results of Section 5.2.1 apply - on associated graded - to the hypercubes

discussed above, completing the proof.

5.2.1 Generalities on hypercubes

We give some general results on hypercubes that look like (summands of) our chromatic

hypercubes for BP ((C4)), on associated graded. In this section, we use the language of ∞-

categories following [60]; in particular, we work in the model of quasicategories, and use

stable ∞-categories following [59]. For a discussion of cubical diagrams in the context of

∞-categories, see [59, Chapter 6], or [1].

We fix C a stable ∞-category. Let [n] denote the totally ordered set {1, . . . , n}, and for

T a totally ordered set, let P(T ) denote its power set regarded as a poset under inclusion.

Let P0(T ) denote the sub-poset P(T ) ∖ {∅}.
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Definition 5.2.1. An n-cube X in C is a functor X ∶ P([n]) → C, and a partial n-cube is a

functor P0([n])→ C. We say an n-cube X is cartesian if the map

X (∅)→ holimT ∈P0([n])X (T )

is an equivalence.

Construction 5.2.2. Let P be a poset and objects CT ∈ C for T ∈ P given. Regarding

C ∶ T ↦ CT as a functor from the discrete category obP, we obtain a diagram XC ∶ P → C via

left Kan extension along the inclusion obP → P. Concretely,

XC(T ) = ⊕
S≤T

CS

and the maps in XC are the canonical inclusions.

Definition 5.2.3. When P = P0([n]), we say a partial n-cube X ∶ P0([n])→ C is built from

disjoint split inclusions if X is equivalent to some XC as in 5.2.2. If X is a cartesian n-cube

such that the corresponding partial n-cube is built from disjoint split inclusions, we say X

is a cartesian n-cube built from disjoint split inclusions.

To make this definition clearer, note that any partial 2-cube built from disjoint split

inclusions is equivalent to one of the form

C2

C1 C1 ⊕C2 ⊕C12

and any partial 3-cube built from disjoint split inclusions is equivalent to one of the form
C3 C2 ⊕C3 ⊕C23

C2

C1 ⊕C3 ⊕C13 C1 ⊕C2 ⊕C3 ⊕C12 ⊕C13 ⊕C23 ⊕C123

C1 C1 ⊕C2 ⊕C12

where the inclusions are the canonical ones. We want to identify the limit of a diagram of
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this form, and we use a result of Antolin-Camarena and Barthel on computing limits of

cubical diagrams inductively:

Proposition 5.2.4. [1, 2.4] Let X ∶ P0([n]) → C be a partial n-cube in C. One has a

pullback square

holimS∈P0([n])X (S) holimS∈P0([n−1])X (S)

X ({n}) holimS∈P0([n−1])X (S ∪ {n})

Proposition 5.2.5. Let X be a partial n-cube in C built from disjoint split inclusions with

respect to some choice of objects {CT}T ∈P0([n]) as in 5.2.2. Then X satisfies

1. holimS∈P0([n])X (S) ≃ Ωn−1C{1,...,n}

2. The map

holimS∈P0([n])X (S)→ holimS∈P0([n−1])X (S)

is nullhomotopic.

Proof. We proceed by induction on n. For n = 1, a cartesian 1-cube is an equivalence

holimS∈P0([1])X (S) ≃Ð→ X ({1})

and the map in (2) is the map to the terminal object. It is straightforward to show that the

partial (n − 1)-cube

P0([n − 1])→ P0([n])
XÐ→ C

is built from disjoint split inclusions, and

P0([n − 1]) −∪{n}ÐÐÐ→ P0([n])
XÐ→ C

is of the form C{n} ⊕Z where Z is a partial (n − 1)-cube built from disjoint split inclusions

using the objects {CT ⊕CT∪{n}}T ∈P0([n−1]), as in 5.2.2. By induction, 5.2.4 gives a pullback
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square
holimS∈P0([n])X (S) Ωn−2C{1,...,n−1}

C{n} C{n} ⊕Ωn−2C{1,...,n−1} ⊕Ωn−2C{1,...,n}

which is a cartesian 2-cube built from disjoint split inclusions. It therefore suffices to prove

the proposition in the case n = 2, which is the claim that for objects C1,C2,C12 ∈ C, there is

a pullback square of the form

ΩC12 C2

C1 C1 ⊕C2 ⊕C12

0

0

One may form a morphism of partial 2-cubes

∗

∗ C12

Ô⇒
C2

C1 C1 ⊕C2 ⊕C12

via naturality of 5.2.2 which, taking limits, constructs such a square. Taking fibers along

the vertical maps, one has the identity map of ΩC1 ⊕ΩC12; the square is therefore cartesian

by [1, 2.2].

5.2.2 Slice towers and chromatic localizations

In this section, we use the slice filtration to work in the ∞-category Fun(Zop,SpG) of

filtered G-spectra (see [59, 1.2.2]). We refer to [90] for a treatment of the slice filtration in

an ∞-categorical context. Let

T ∶ SpG → Fun(Zop,SpG)

be the functor which associates to a G-spectrum its slice tower, which may be obtained as

in [59, 1.2.1.17]. We use the following notation in this context:

• P̃ k ∶ Fun(Zop,SpC4) evkÐ→ SpC4
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• P̃ k
k = fib(P̃ k → P̃ k−1)

• P k = P̃ k ○ T

• P k
k = P̃ k

k ○ T

• holim ∶ Fun(Zop,SpC4)→ SpC4 is the functor sending a tower to its homotopy limit.

We use extensively that limits and colimits are computed pointwise in functor categories.

We begin with a useful lemma:

Lemma 5.2.6. The functor T ∶ SpG → Fun(Zop,SpG) commutes with filtered colimits.

Proof. Let

X1 →X2 →X3 → ⋯

be an ind-system of G-spectra with colimit X. For all k ∈ Z, we have a map of cofiber

sequences
colimiPk+1(Xi) colimiXi colimiP k(Xi)

Pk+1(X) X P k(X)

≃

By the slice recognition principle [39, 4.16], the left and right arrows are equivalences provided

that colimiPk+1(Xi) is slice > k and colimiP k(Xi) is slice ≤ k. The former follows from the

fact that the subcategory

τ>k = {Y ∈ SpG : Y > k}

is a localizing subcategory by definition, and the latter follows from the fact that slice spheres

are compact.

The lemma now follows from the fact that equivalences in functor categories are detected

pointwise.

Lemma 5.2.6 allows us to easily determine the slice tower of the C4-spectrum BP
((C4))

i1,...,ij
.

We define n so that −nρ4 = ∣NC4

C2
(ti1⋯tij)−1∣, and

BP
((C4))

i1,...,ij
= colim(BP ((C4))

N
C4
C2

(ti1⋯tij )⋅ÐÐÐÐÐÐÐ→ Σnρ4BP ((C4))
N
C4
C2

(ti1⋯tij )⋅ÐÐÐÐÐÐÐ→ ⋯)
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Proposition 5.2.7. There is an equivalence of filtered C4-spectra

T (BP ((C4))

i1,...,ij
) ≃ colimkT (Σknρ4BP ((C4)))

In particular, the localization

BP ((C4)) → BP
((C4))

i1,...,ij

induces the corresponding localization

HZ(2) ∧ S0[C4 ⋅ t1,C4 ⋅ t2, . . .]→HZ(2) ∧ S0[C4 ⋅ t1,C4 ⋅ t2, . . .][C4 ⋅ (ti1⋯tij)−1]

on slice associated-graded. The notation is as in [39], where

S0[C4 ⋅ t1,C4 ⋅ t2, . . .][C4 ⋅ (ti1⋯tij)−1] = NC4

C2
(S0[t1, t2, . . .][(ti1⋯tij)−1])

Proof. The first claim follows immediately from Lemma 5.2.6. The description of the slice

associated graded of BP ((C4))

i1,...,ij
follows from the HHR slice theorem and [39, Corollary 4.25],

which implies that

P l
l (Σknρ4BP ((C4))) ≃ Σknρ4P l−4kn

l−4knBP
((C4))

Definition 5.2.8. We define the wedges of slice spheres Ŵ i1,...,ij
2d and Ŵ2d by

P 2d
2d (BP

((C4))

i1,...,ij
) =HZ(2) ∧ Ŵ

i1,...,ij
2d

P 2d
2d (BP ((C4))) =HZ(2) ∧ Ŵ2d

5.2.3 Proof that BP ((C4)) is cofree

We introduce the chromatic n-cubes we need to prove that BP ((C4)) is cofree and show

they split as a summand that is constant in n and a cartesian n-cube built from disjoint split

inclusions.

Definition 5.2.9. Consider the following hypercubes:
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1. Let Hn be the cartesian n-cube so that for {i1, . . . , ij} ∈ P0([n])

Hn({i1, . . . , ij}) = BP ((C4))

i1,...,ij

One may form this cube inductively by working in the category of MU
((C4))

(2)
-modules

and applying the functors (−)[N(ti)−1]. See [1, 3.1] for a similar construction.

2. Let Sn,d be the cartesian n-cube defined on P0([n]) by

Sn,d ∶ P0([n])
HnÐ→ SpC4

P 2d
2dÐÐ→ SpC4

With notation as in Definition 5.2.8, we note that Ŵ i1,...,ij
2d has Ŵ2d as a split summand

for any {i1, . . . , ij}, corresponding to the split inclusion

πu2d(BP ((C4)))↪ πu2d(BP
((C4))

i1,...,ij
)

This splitting is natural in {i1, . . . , ij}, so we see that there is a splitting

Sn,d ≃ (HZ(2) ∧ Ŵ2d)⊕Xn,d

where Xn,d is a cartesian n-cube satisfying

Xn,d({i1, . . . , ij}) =HZ(2) ∧ (Ŵ i1,...,ij
2d /Ŵ2d)

We have the following connection to the generalities in 5.2.1:

Proposition 5.2.10. The cube Xn,d is a cartesian n-cube built from disjoint split inclusions.

Proof. Xn,d is cartesian by definition. The result - and the terminology - follows from the

fact that for any {i1, . . . , ij}, the maps

πu∗(BP
((C4))

ik
)↪ πu∗(BP

((C4))

i1,...,ij
)

are split inclusions, and after factoring out πu∗(BP ((C4))), the maps

ιk ∶
πu∗(BP

((C4))

ik
)

πu∗(BP ((C4))) ↪
πu∗(BP

((C4))

i1,...,ij
)

πu∗(BP ((C4)))
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are split inclusions with the property that im(ιk) ∩ im(ιk′) = {0} for k ≠ k′. Now the claim

follows from the fact that

πu∗(BP
((C4))

i1,...,ij
)

πu∗(BP ((C4))) = ( ⊕
T<{i1,...,ij}
T ∈P0(n)

πu∗(BP
((C4))

T )
πu∗(BP ((C4))))⊕

(ti1⋯tijγ(ti1)⋯γ(tij))<0πu∗(BP ((C4)))
πu∗(BP ((C4)))

where the latter summand denotes the subgroup of
πu∗ (BP

((C4))
i1,...,ij

)

πu∗ (BP
((C4)))

generated by monomials

containing (ti1⋯tijγ(ti1)⋯γ(tij))−k for k > 0.

The following is an immediate consequence of 5.2.5 and 5.2.10:

Corollary 5.2.11. The map Sn,d(∅)→ Sn−1,d(∅) can be identified with

(HZ(2) ∧ Ŵ2d)⊕Xn,d(∅)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0

0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

ÐÐÐÐ→ (HZ(2) ∧ Ŵ2d)⊕Xn−1,d(∅)

The canonical map BP ((C4)) → BP
((C4))

i1,...,ij
, by universal property, determines compatible

maps BP ((C4)) → Hn(∅) so that there is a map

BP ((C4)) → holimnHn(∅)

We will show this map is an equivalence, and this will complete the proof that BP ((C4)) is

cofree by the following.

Proposition 5.2.12. The C4-spectrum holimnHn(∅) is cofree.

Proof. By Corollary 5.1.3, the category of cofree C4-spectra is closed under limits, hence it

suffices to show that each Hn(∅) is cofree. There is by definition an equivalence

Hn(∅) ≃Ð→ holimT ∈P0([n])Hn(T ) = holim{i1,...,ij}∈P0([n])BP
((C4))

i1,...,ij

so it suffices to show that each BP ((C4))

i1,...,ij
is cofree. BP ((C4))

i1,...,ij
is a module over

MU
((C4))

(2)
[NC4

C2
(ti1⋯tij)−1]
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and so we may argue as in [39, Section 10]: we have that

ΦC4(MU
((C4))

(2)
[NC4

C2
(ti1⋯tij)−1]) ≃ ΦC2(MU

((C4))

(2)
[NC4

C2
(ti1⋯tij)−1]) ≃ ∗

as

ΦC4(NC4

C2
(ti1)) = ΦC2(ti1) = 0

and similarly

ΦC2(NC4

C2
(ti1)) = ΦC2(iC4

C2
NC4

C2
(ti1)) = ΦC2(ti1 ⋅ γ(ti1)) = 0

To show that the map

BP ((C4)) → holimnHn(∅)

is an equivalence, we work instead in filtered C4-spectra, where by functoriality we have a

map

f ∶ T (BP ((C4)))→ holimn(holim{i1,...,ij}∈P0([n])T (BP
((C4))

i1,...,ij
))

We will show that f is an equivalence, for which we need the following lemma:

Lemma 5.2.13. Let C be a co-complete stable ∞-category. Suppose T1,T2 ∈ Fun(Zop,C) are

such that

colimkP̃
k(T1) ≃ colimkP̃

k(T2) ≃ ∗

If φ ∶ T1 → T2 has the property that P̃ k
k (φ) is an equivalence for all k ∈ Z, then φ is an

equivalence.

Proof. Let T3 = cofib(φ ∶ T1 → T2), then it suffices to show that T3 ≃ ∗. We have that

P̃ k
k (T3) ≃ ∗ for all k ∈ Z so that

P̃ k(T3)→ P̃ k−1(T3)

is an equivalence for all k ∈ Z. Therefore T3 is equivalent to a constant tower, but since

colimk P̃ k(T3) ≃ ∗, we must have T3 ≃ ∗.
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Theorem 5.2.14. The C4-spectrum BP ((C4)) is cofree, independent of Lin’s theorem.

Proof. It suffices to show that f is an equivalence, as

holim(holim{i1,...,ij}∈P0([n])T (BP
((C4))

i1,...,ij
)) ≃ Hn(∅)

and

holim(T (BP ((C4)))) ≃ BP ((C4))

Note that

P̃ k
k (holim{i1,...,ij}∈P0([n])T (BP

((C4))

i1,...,ij
)) ≃ holim{i1,...,ij}∈P0([n])P̃

k
k (T (BP

((C4))

i1,...,ij
))

≃

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∗ k = 2d − 1

Sn,d(∅) k = 2d

The map P̃ 2d
2d (f) is then identified with the map

HZ(2) ∧ Ŵ2d → holimn((HZ(2) ∧ Ŵ2d)⊕Xn,d) ≃ holimn(HZ(2) ∧ Ŵ2d)⊕ holimnXn,d(∅)

By Corollary 5.2.11, the lefthand summand is constant in n, and the righthand summand is

pro-zero, hence the map is an equivalence.

To establish that f is an equivalence, by Lemma 5.2.13, it suffices now to show that

colimkP̃
k(holimn(holim{i1,...,ij}∈P0([n])T (BP

((C4))

i1,...,ij
))) ≃ ∗

i.e. that the filtration on holimnHn(∅) strongly converges. Note that by ( [39], 4.42), if

X ∈ SpC4 , then πl(P kX) = 0 for l > ⌊(k + 1)/4⌋ when k < 0 and for k > l when k ≥ 0. Taking

limits, it follows that

πl(P̃ k(holim{i1,...,ij}∈P0([n])T (BP
((C4))

i1,...,ij
))) = 0

in the same range, and so

πl(P̃ k(holimn(holim{i1,...,ij}∈P0([n])T (BP
((C4))

i1,...,ij
)))) = 0
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in the same range by the Milnor sequence. It follows that, for any l, taking the colimit as

k → −∞ of πl gives zero.

Remark 5.2.15. This result recovers the Hu-Kriz result that BPR is cofree: since BP ((C4))

is cofree, iC4

C2
BP ((C4)) = BPR ∧BPR is cofree, hence so is the retract BPR. Alternatively, as

discussed in the introduction, one may argue similarly to 5.2.14 to show that BPR is cofree,

and the result in this case is due to Mike Hill.
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Chapter 6

CHROMATIC MEASURE AND STACKS ASSOCIATED TO REAL

JOHNSON-WILSON THEORIES

In this chapter, we bring Real-oriented homotopy theory into the world of stacks by applying

a construction of Hopkins’ to various fixed point spectra, which we review in Section 6.1.

In Section 6.2, we use this construction to define an invariant of a ring spectrum E, a

natural number that we call chromatic measure. Roughly, this measures how far E is from

being complex orientable. We demonstrate that this measure is computable given a suitable

description of the associated stackME.

As an application, we focus in particular on the Real Johnson-Wilson theories ER(n) and

their fixed points ER(n). We compute the chromatic measure of ER(n) for all n and give

several modular descriptions in Section 6.3 of the associated stack MER(n). This recovers

and generalizes results of Hopkins on ER(1) ≃ KO. We give similar results for related

Morava E-theories and comment in Section 6.4 on future directions of this work, aimed at

generalizing such results to connective versions of the ER(n)’s.

We also give a way to compute the chromatic measure of a higher realK-theory spectrum,

EOn, in terms of the valuation ν on the endomorphism ring End(G) of the corresponding

formal group of height n, and perform this calculation explicitly for the standard Cp subgroup

of the n-th Morava stabilizer group when p − 1∣n.

Throughout this chapter, we continue to work in the flat topology on affine schemes, and

we fix our ground ring to be k = Z, or when working p-locally, k = Z(p).
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6.1 Hopkins’ From Spectra to Stacks

In this section, we recall some notions from Mike Hopkins’ lecture From Spectra to Stacks

in [22]. These lecture notes have been particularly inspiring to the author, and we encourage

anyone interested in chromatic homotopy to study them seriously. In particular, we sample

only a few concepts from these notes, as needed for our results in this chapter. There are

a number of other ideas in these notes of which the interested reader should be aware, and

we cannot hope to improve upon their exposition therein. Our notion of chromatic measure

below was certainly implicit in these notes; we have simply taken care to formally define it.

We begin with Hopkins’ definition of associated stack :

Definition 6.1.1. Suppose E is a homotopy-commutative ring spectrum with the property

that the commutative ring MU∗E is concentrated in even degrees. The pair

(MU∗E,MU∗(MU ∧E))

determines a Hopf algebroid, and we define the stack associated to E by

ME ∶=M(MU∗E,MU∗(MU∧E))

as in Definition 2.1.39.

Remark 6.1.2. We include the evenness assumption here so that MU∗E is an honest com-

mutative ring. It is of course possible to work with stacks on graded-commutative rings, but

we do not pursue that here. Note also that the Kunneth map

MU∗MU ⊗MU∗ MU∗E →MU∗(MU ∧E)

is an isomorphism because MU∗MU is flat over MU∗. Thus equivalently, we have

ME =M(MU∗E,MU∗MU⊗MU∗MU∗E)

Under this identification, ηR is identified with the coaction map on the (MU∗,MU∗MU)-

comodule MU∗E.
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Remark 6.1.3. From the point of view of computations in chromatic homotopy, the coho-

mology of the sheaf OME
on ME is the E2-page of the Adams-Novikov spectral sequence

for E. Thus, the stackiness of ME is in some sense measuring both the failure of E to be

complex-orientable and the complexity of the ANSS for E. We make this somewhat precise

in the next section.

The unit S→ E of the ring spectrumE provides a map of Hopf algebroids (MU∗,MU∗MU)→

(MU∗E,MU∗(MU ∧E)) which determines a morphism of stacks

φE ∶ME →MFG(1)

In light of Remark 6.1.2, we may view this construction as a relative Spec construction:

MU∗E is an (MU∗,MU∗MU)-comodule algebra - i.e. a quasicoherent sheaf of algebras FE

onMFG(1) - such that

(φE)∗OME
≅ FE

We have more generally:

Definition 6.1.4. Let (A,Γ) be a Hopf algebroid, and M a (left)-comodule algebra over

(A,Γ) via

ψ ∶M → Γ⊗AM

M determines a Hopf algebroid (M,Γ⊗AM) via the following structure maps

• ηL ∶M → Γ⊗AM is given by m↦ 1⊗m.

• ηR = ψ.

• ε ∶ Γ⊗AM →M is defined by the commutative diagram

Γ⊗AM M

A⊗AM

ε

ε′⊗1 ≅

where ε′ ∶ Γ→ A is the identity morphism in (A,Γ).
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• ∆ is defined by the commutative diagram

Γ⊗AM (Γ⊗AM)⊗M (Γ⊗AM) Γ⊗A Γ⊗AM

Γ⊗A Γ⊗A Γ⊗AM

∆

∆′⊗ψ

≅

1⊗µ⊗1

where ∆′ ∶ Γ→ Γ⊗A Γ is the composition morphism in (A,Γ).

• c ∶ Γ⊗AM → Γ⊗AM is defined by the commutative diagram

Γ⊗AM Γ⊗AM

Γ⊗AM Γ⊗A Γ⊗AM

c

c′⊗1

1⊗ψ

µ⊗1

where c′ ∶ Γ→ Γ is the inversion morphism in (A,Γ).

We will make use of the following fact to identifyME when E is complex orientable.

Lemma 6.1.5. In Definition 6.1.4, let M = Γ be the left (A,Γ)-comodule algebra with

comodule structure map

ψ = ∆ ∶ Γ→ Γ⊗A Γ

The identity morphism ε ∶ Γ→ A induces an equivalence of stacks

Spec(A)→M(Γ,Γ⊗AΓ)

Proof. We will prove that the map

Spec(A)→Mpre
(Γ,Γ⊗AΓ)

is an equivalence of prestacks; the result follows by applying stackification. We claim first

that the prestackMpre
(Γ,Γ⊗AΓ)

is discrete, in the sense of Definition 2.1.19. This follows from

the claim that the sequence

Γ Γ⊗A Γ Γ
g↦1⊗g

∆

ε⊗1
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is a coequalizer sequence. This is equivalent to the claim that, for every commutative ring

R, the sequence

Spec(Γ)(R) Spec(Γ)(R) ×Spec(A)(R) Spec(Γ)(R) Spec(Γ)(R)
composition

π2

is an equalizer sequence in Sets. (Spec(A)(R),Spec(Γ)(R)) forms a groupoid CR, and the

first map in the above sequence sends

(x fÐ→ y)↦ (idy, x
fÐ→ y)

where x
fÐ→ y is a morphism in CR. The claim then follows from the obvious bijection

{(y gÐ→ z, x
fÐ→ y) : g ○ f = f} ≅ {(idy, x

fÐ→ y)}

It suffices now to show that for each commutative ring R, the map

Spec(A)(R)→Mpre(R)

is essentially surjective. It suffices to show this for the universal object id ∶ Γ → Γ in the

groupoidMpre(Γ), which follows from the commutativity of the diagram

Γ

Γ⊗A Γ Γ

Γ A

id

∆

1⊗ε

ε

g↦1⊗g
ηR

recalling the diagram from Remark 2.1.42.

Proposition 6.1.6. Let E and F be homotopy commutative ring spectra such that MU∗E

and MU∗F are even.

1. If E is complex-orientable, ME ≃ Spec(E∗), and φE is the map classifying the formal

group over E∗.

179



2. Suppose that MU∗F is a flat MU∗-module, then one has a pullback square

ME∧F MF

ME MFG(1)

φF

φE

3. φE is an affine morphism.

Proof. For (1), fix a complex orientation MU → E, and note first that since E is complex

orientable, MU∗E ≅ E∗[bi] with ∣bi∣ = 2i by Proposition 2.2.8, so E∗ is even if and only if

MU∗E is even. Lemma 6.1.5 gives an equivalence

Spec(MU∗) ≃M(MU∗MU,MU∗MU⊗MU∗MU∗MU) =MMU

The complex orientation of E determines a ring map MU∗ → E∗. Base changing the above

equivalence along this map we have

Spec(E∗) ≃ Spec(MU∗) ×Spec(MU∗) Spec(E∗)

≃ (M(MU∗MU,MU∗MU⊗MU∗MU∗MU)) ×Spec(MU∗) Spec(E∗)

≃M(MU∗E,MU∗MU⊗MU∗MU∗E)

=ME

using the isomorphism of Proposition 2.2.8.

For (2), we first prove the claim in the case F = MU . MU∗MU ≅ MU∗[bi] is flat over

MU∗, so the hypotheses apply. In this case, one checks directly that the map

(MU∗,MU∗MU)↪ (MU∗MU,MU∗MU ⊗MU∗ MU∗MU)

induces a fibration of stacks MMU → MFG(1) (note that neither needs stackification by

Theorem 2.1.64), in the sense of Remark 2.1.29. We may therefore compute the homotopy

pullback
P MMU

ME MFG(1)

φF

φE
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as the strict pullback. Moreover, we may compute this homotopy pullback before stackifica-

tion by Remark 2.1.28. It is straightforward to show then that

P ≃M(MU∗MU⊗MU∗MU∗E,MU∗MU⊗MU∗MU∗MU⊗MU∗MU∗E)

Finally, using the Kunneth map and thatMU∗MU is flat overMU∗, we have an isomorphism

of Hopf algebroids

(MU∗MU ⊗MU∗ MU∗E,MU∗MU ⊗MU∗ MU∗MU ⊗MU∗ MU∗E)
≅Ð→ (MU∗(MU ∧E),MU∗(MU ∧MU ∧E))

so that P ≃ME∧MU .

In the general case, we have a diagram as follows

Spec(MU∗E) Spec(MU∗)

Spec(MU∗E ⊗MU∗ MU∗F ) Spec(MU∗F )

ME MFG(1)

P MF

where each square is a pullback. We have used the MU case to identify the pullbacks in the

back and righthand faces, and we have used (1) to identifyME∧MU ,MF∧MU , andMMU with

the corresponding affine schemes. We wish to show that P ≃ME∧F ; P is locally presentable,

as a pullback of locally presentable stacks, and the above diagram implies that

Spec(MU∗E ⊗MU∗ MU∗F )→ P

is a faithfully flat cover. Set

• R ∶=MU∗

• RMU ∶=MU∗MU

• RE ∶=MU∗E
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• RF ∶=MU∗F

and consider then the following diagram of pullback squares

Spec(RMU ⊗R RF ) Spec(RF )

Spec(RMU ⊗R RE ⊗R RF ) Spec(RE ⊗R RF )

Spec(RF ) MF

Spec(RE ⊗R RF ) P
This determines an equivalence

M(MU∗E⊗MU∗MU∗F,MU∗MU⊗MU∗MU∗E⊗MU∗MU∗F ) → P

by Theorem 2.1.44. Using the Kunneth map and flatness of MU∗F , as before, one has an

equivalence

ME∧F ≃M(MU∗E⊗MU∗MU∗F,MU∗MU⊗MU∗MU∗E⊗MU∗MU∗F )

For (3), it suffices to show the pullback

P Spec(MU∗)

ME MFG(1)
φE

P is affine, since Spec(MU∗)→MFG(1) is a faithfully flat cover. This follows from (1) and

(2) as P ≃ME∧MU ≃ Spec(E∗MU).

6.2 Chromatic measure

For E a homotopy commutative ring spectrum, we introduce an invariant of E called

chromatic measure which, roughly, measures the failure of E to be complex-orientable. When

MU∗E is even - so that we may associate to E the stackME - this invariant becomes quite

computable given a modular description ME. In this section, we define this invariant and

compute it for E = ER(n), the fixed points of ER(n), the n-th Real Johnson-Wilson theory,
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for all n ≥ 0. We also demonstrate how to compute Φ(EOn) for EOn a higher real K-theory,

in terms of the valuation ν on the endomorphism ring End(G) of the corresponding formal

group of height n.

6.2.1 The X(n)-spectra andMFG(n)

We begin by recalling Ravenel’s family of Thom spectra X(n). By Bott periodicity, one

has an equivalence ΩSU ≃ BU , and one defines

X(n) ∶= Thom(ΩSU(n)→ ΩSU ≃ BU)

They are E2 algebras in Sp; note that X(1) ≃ S0 and X(∞) ≃MU . Therefore, MU admits

an X(n)-orientation for all n, and one has Thom isomorphisms

MU∗X(n) ≅MU∗[b1, . . . , bn−1]

See [79, Section 9] and [22] for more details. The X(n)’s are especially crucial to Hopkins’

associated stacksME because of the following.

Proposition 6.2.1. Let MFG(m) be the moduli stack of formal groups together with an

m-jet, as in Definition 2.1.63. There is an equivalence of stacks MFG(m) ≃MX(m).

Proof. By the Thom isomorphism, one has an isomorphism of Hopf algebroids

(MU∗X(m),MU∗(MU ∧X(m))) ≅ (MU∗[b1, . . . , bm−1],MU∗MU[b1, . . . , bm−1])

The map of Hopf algebroids

(MU∗X(m),MU∗(MU ∧X(m)))→ (MU∗MU,MU∗(MU ∧MU))

is an inclusion, so we may compute ηR(bi) in the latter. In MU∗MU , the bi are by definition

the coefficients of the canonical strict isomorphism η∗LF → η∗RF (see Lemma 2.2.4) where F

is the universal formal group law over MU∗ and

ηL ∶MU ≃ S0 ∧MU →MU ∧MU
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ηR ∶MU ≃MU ∧ S0 →MU ∧MU

Note that a map

φ ∶MU∗MU ⊗MU∗ MU∗MU → R

corresponds to a sequence

F1
g←Ð F2

f←Ð F3

of isomorphisms of formal group laws over R, where Fi is the pushforward of FMU along the

the map MU →MU ∧MU ∧MU given by mapping MU to the i-th smash factor. Since ηR

in the Hopf algebroid (MU∗MU,MU∗(MU ∧MU)) is induced by the map

MU ∧MU ≃MU ∧ S0 ∧MU →MU ∧MU ∧MU

we have that φ(bi) are the coefficients of f , and φ(ηR(bi)) are the coefficients of g ○ f .

Therefore, if ηL(bi) = ηR(bi) for i ≤m − 1, then g(x) ≡ x mod xm+1. It follows that the map

MX(m) →MFG(1)

factors through an equivalence onto the substackMFG(m).

Proposition 6.2.2. The mapMFG(m)→MFG(1) is a faithfully flat cover with the property

that
ME∧X(m) MFG(m)

ME MFG(1)

is a pullback.

Proof. This follows from the fact that MU∗X(m) ≅MU∗[b1, . . . , bm−1] is faithfully flat over

MU∗ along with Proposition 6.2.1

Definition 6.2.3. For E a homotopy commutative ring spectrum, we define the chromatic

measure of E to be the integer

Φ(E) ∶= min{n ≥ 0 : X(n) ∧E is complex-orientable}
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Example 6.2.4. 1. Since X(1) ≃ S0, Φ(E) = 1 if and only if E is complex orientable.

2. In [22], Hopkins shows that Φ(KO) = Φ(ko) = 2 and Φ(tmf) = 4.

Proposition 6.2.5. Suppose E is a homotopy commutative ring spectrum with the property

that MU∗E is even. If the pullback

P MFG(n)

ME MFG(1)

P is affine, then Φ(E) ≤ n. Conversely, if E is connective and Φ(E) ≤ n, then P is affine.

Proof. By Remark 6.2.2, one has an equivalence

P ≃ME∧X(n)

If Φ(E) ≤ n, then E ∧ X(n) is complex orientable and hence ME∧X(n) ≃ Spec(E∗X(n)).

Conversely ifME∧X(n) is affine, then

Exts,t
(MU∗,MU∗MU)

(MU∗,MU∗(E ∧X(n))) ≅Hs(ME∧X(n);OME∧X(n)) = 0

for s > 0. The Adams-Novikov spectral sequence - which converges at E since E is assumed

connective - is thus concentrated in the 0-line, and we have an iso

E∗X(n) ≅ Hom(MU∗,MU∗MU)(MU∗,MU∗(E ∧X(n)))

The latter graded abelian group is concentrated in even degrees because there is a Kunneth

isomorphism

MU∗(E ∧X(n)) ≅MU∗E ⊗MU∗ MU∗X(n)

as MU∗X(n) is flat over MU∗.
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6.2.2 The chromatic measure of Real Johnson-Wilson theories and EOn

We are interested in a particular class of examples of associated stacks ME via fixed

points of genuine equivariant spectra. Suppose E ∈ SpG is a ring G-spectrum such that

the underlying spectrum i∗eE is complex-oriented. In most examples of interest, the fixed

point spectrum EG is not complex-oriented, hence we may try and use Hopkins’ associated

stack construction to bring EG into the chromatic picture, and in particular we may ask if

the moduli problem MEG is related to the formal group over π∗(i∗eE). One always has a

factorization
Spec(π∗(i∗eE)) MFG(1)

Spec(π∗(i∗eE))/G

This is because if f ∶ MU → E is a complex orientation, and g ∶ E → E is a ring automor-

phism, there is a canonical strict isomorphism from the formal group law classified by f to

the formal group law classified by g ○ f since each arise from complex orientations of F , and

thus determine a coordinate on the same underlying formal group via Lemma 2.2.4. If the

dashed arrow is affine, we will see it is often the case that

MEG ≃ Spec(π∗(i∗eE))/G

Lemma 6.2.6. Let A be a ring, R an A-algebra, and G a finite group acting on R in the

category of A-algebras.

1. Suppose that G acts freely on the functor of points HomCAlgA(R,−) in the sense that

for any nonzero A-algebra S,

HomCAlgA(R,S)

is a free G-set. Then Spec(R) → Spec(RG) is a finite etale G-torsor in Aff /Spec(A),
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and

R⊗RG R →∏
g∈G

R

x⊗ y ↦ (x ⋅ g(y))g∈G

is an isomorphism of left R-algebras

2. Spec(RG) ≃ Spec(R)/G.

3. If M is a discrete stack with an affine morphism M → Spec(R)/G, then M is an

affine scheme.

Proof. (1) is [49, Theorem A7.1.1]. For (2), note that the G-torsor Spec(R) → Spec(RG)

is classified by the map Spec(RG) → Spec(R)/G given by the descent datum on the cover

Spec(R) → Spec(RG) consisting of the identity map R → R with the isomorphism on the

intersection given by the map

∏
g∈G

R → R⊗RG R

inverse to the isomorphism in (1). This shows, in particular, that the following diagram

commutes and is a pullback

Spec(R) Spec(R)

Spec(RG) Spec(R)/G

=

where Spec(R)→ Spec(R)/G is the canonical G-torsor. We thus have the following commu-

tative diagram
Spec(∏

g∈G
R) Spec(R)

Spec(R⊗RG R) Spec(R)

Spec(R) Spec(R)/G

Spec(R) Spec(RG)

≅ =

=

where the front and back faces are pullback squares. The fact that the upper left arrow is
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an iso implies that we have a diagram

M(R,R⊗
RG

R) Spec(RG)

Spec(R)/G

≃

≃

by Theorem 2.1.44, and thus Spec(RG) → Spec(R)/G is an equivalence. For (3), since the

morphism is affine, we have a pullback square

Spec(R̃) M

Spec(R) Spec(R)/G

for some ring R̃. The top horizontal map in the above diagram is a G-torsor and hence

M ≃ Spec(R̃)/G. It therefore suffices to show that G acts on R̃ under the conditions of

(1), which follow since M is discrete: a G-set X has a free action if and only if the action

groupoid of X is discrete.

We now turn our attention to the application mentioned above. Let ER(n) denote the

n-th Real Johnson-Wilson theory, as in Example 3.2.11 and let ER(n) ∶= (ER(n))C2 ≃

(ER(n))hC2 . As before, we have a factorization:

Spec(E(n)∗) MFG(1)

Spec(E(n)∗)/C2

p

Proposition 6.2.7. The morphism p is affine.

Proof. Since φX(m) is a faithfully flat cover, it suffices to show that for some m, the stack

N ∶= Spec(E(n)∗)/C2 ×MFG(1)MFG(m)

is an affine scheme. By Lemma 6.2.6 (3), it suffices to show N is discrete, and since the

stackification of a discrete prestack is a discrete stack, it suffices to show that

N pre ∶= (Spec(E(n)∗)/C2)pre ×MFG(1)MFG(m)
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is a discrete prestack, where (Spec(E(n)∗)/C2)pre(R) is the action groupoid of the C2-set

HomCAlg(E(n)∗,R), as in Example 2.1.24.

Referring to Definition 2.1.25, an element of N pre(R) is a triple (f,G, φ) where

• f ∶ E(n)∗ → R is a ring map

• G is a formal group law over R

• φ ∶ f∗FE(n) → G is a strict isomorphism

Set F ∶= f∗FE(n). An automorphism of the triple (f,G, φ) consists of

• An automorphism of f in the action groupoid, i.e. g ∈ C2 such that g ○ f = f

• An automorphism ψ ∶ G → G that is the identity mod xm+1 such that the following

diagram inMFG(1)(R) commutes.

F F

G G

p(g)

φ φ

ψ

If the element g ∈ C2 is the identity, then p(g) = idF and the above diagram implies that ψ

is the identity of G, in which case we have the identity automorphism of (f,G, φ). If g = γ

is the generator of C2, then p(g) = −[−1]F , as the action map

γ ∶ i∗eMUR → i∗eMUR

induces the map on homotopy groups classifying the conjugate of the universal formal group

law Funiv by −[−1]Funiv(x) (see [39, Example 11.19]).

We now set m = 2n, and note that since f(vn) is a unit in R, and

f(vn) = f(γ(vn)) = f(−vn) = −f(vn)

we have that 2f(vn) = 0, so R is an F2-algebra, and in particular −[−1]F (x) = [−1]F (x). The

above diagram therefore implies that

[−1]F (x) ≡ x mod x2n+1
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so that

0 = F (x, [−1]F (x)) ≡ F (x,x) mod x2n+1

but the right hand side is [2]F (x), and F has height ≤ n, a contradiction for a nonzero ring

R.

Remark 6.2.8. The same proof works with Spec(L) in place ofMFG(2n), but this proof will

tell us how the ER(n)’s interact with the X(m)’s.

These purely stack-theoretic observations have consequences for ER(n) because the E2

page of the HFPSS computing ER(n)∗X is the cohomology of a sheaf on Spec(E(n)∗)/C2.

We first need a couple of lemmas to help us access the cohomology of this sheaf.

Lemma 6.2.9. Let E be a cofree C2-spectrum, and X a spectrum, then (E ∧ i∗X)hC2 ≃

EhC2 ∧X if and only if E ∧ i∗X is also cofree. This is always true if E is a module over a

C2-ring spectrum R such that ΦC2(R) ≃ ∗.

Proof. This is immediate from the fact that EC2 ≃ EhC2 and (−)C2 commutes with colimits.

For the second claim, note that ΦC2(E ∧ i∗X) and (E ∧ i∗X)tC2 are both modules over

ΦC2(R).

Note that this lemma applies when E = ER(n) or E = En with its central C2 action from

the Morava stabilizer group as in 3.2.12, because these are both MUR[vn−1]-module spectra,

and ΦC2(MUR[vn−1]) ≃ ∗.

Lemma 6.2.10. Let f ∶ N →M be an affine flat map of stacks and F ∈ QCoh(N ). If M

admits a faithfully flat cover by an affine scheme (e.g. ifM is the stack associated to a Hopf

algebroid), there is an isomorphism

H∗(M; f∗F) ≅H∗(N ;F)

Proof. The quasicoherent sheaf F admits an injective resolution in QCoh(N )

F ≃ (0→ I0 → I1 → I2 → ⋯)

190



If, for example, N is the stack associated to a Hopf algebroid, we may choose the Ii’s to

correspond to cofree comodules under the equivalence of Theorem 2.1.54. By definition (see

2.1.50), H∗(N ;F) is the cohomology of the complex

0→ Γ(N ;I0)→ Γ(N ;I1)→ Γ(N ;I2)→ ⋯

where Γ(N ;−) denotes the global sections functor. Since f is affine,

0→ f∗I0 → f∗I1 → f∗I2 → ⋯

is exact in QCoh(M), as f∗ is exact; this may be checked on the affine cover of M given

by assumption, where pushforward is given by restriction of scalars. Moreover, we have

Γ(M; f∗Ii) = Γ(N ;Ii)

It suffices to show then that each f∗Ii is injective, which follows from the adjunction

HomQCoh(M)(−, f∗Ii) ≅ HomQCoh(N )(f∗(−),Ii)

and the fact that f∗ is exact, as f is flat.

Theorem 6.2.11. Φ(ER(n)) = 2n. In particular, ER(n) ∧X(2n) is complex orientable.

Proof. We first prove that Φ(ER(n)) ≤ 2n: let X be any homotopy commutative ring spec-

trum under X(2n) such that MU∗X is even (e.g. MU or X(2n) itself). Then we may form

MX , and we have a commutative diagram

Ñ MX

N MFG(2n)

Spec(E(n)∗)/C2 MFG(1)

p̃

f̃

f

p
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where both squares are pullbacks, N is an affine scheme, and f and p are affine morphisms

by the proof of Proposition 6.2.7. By the commutativity of the diagram, we have

H∗(Spec(E(n)∗)/C2;p∗FX) =H∗(Spec(E(n)∗)/C2;p∗(φX)∗OMX
)

=H∗(Spec(E(n)∗)/C2; f∗(f̃∗p̃∗OMX
))

=H0(Spec(E(n)∗)/C2; f∗(f̃∗p̃∗OMX
))

=H0(C2; (E(n) ∧X)∗)

where the higher cohomology groups vanish since one has an isomorphism

H∗(Spec(E(n)∗)/C2; f∗(f̃∗p̃∗OMX
)) ≅H∗(N ; f̃∗p̃

∗OMX
)

by Lemma 6.2.10, as f is flat by Proposition 6.2.2. Now N is affine, and the higher coho-

mology of a quasicoherent sheaf on an affine scheme vanishes by Serre vanishing [85, tag

01XB].

By Lemma 6.2.9, the above sheaf cohomology is the E2 page of the HFPSS computing

π∗((ER(n) ∧ i∗X)hC2). The spectral sequence thus collapses and the result follows.

To see that Φ(ER(n)) ≥ 2n, suppose to the contrary that ER(n)∧X(2n − 1) is complex

orientable. We will see in Proposition 6.3.1 thatMER(n) ≃ Spec(E(n)∗)/C2, and so it follows

that there is a pullback square

MER(n)∧X(2n−1) MFG(2n − 1)

Spec(E(n)∗)/C2 MFG(1)

If the pullback MER(n)∧X(2n−1) were affine, it would be discrete. This is a contradiction

because we can consider the point of the pullback at the ring F2 given by

(E(n)∗
φÐ→ F2, φ

∗FE(n), id)

where φ sends vi ↦ 0 for i ≠ n and vn ↦ 1. This has a nontrivial automorphism because

[−1]FE(n)(x) ≡ x mod (2, v1, . . . , vn−1, vn − 1) + x2n
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(see [11, Proposition 3.5])

Remark 6.2.12. This recovers Hopkins’ result that KO ∧X(2) is complex orientable. The

proof gives something slightly stronger than stated, namely that if X is any ring spectrum

under X(2n) so that MU∗X is even and commutative, then

(ER(n) ∧X)∗ =H0(C2; (E(n) ∧X)∗)

Most of the same arguments above work for various homotopy fixed point spectra of

Morava E-theories. We fix a prime p and let En be the Morava E-theory associated to a

height n formal group law G over a perfect field k of characteristic p. Let G be a finite

subgroup of the corresponding Morava stabilizer group, and set EOn ∶= EhG
n . Let ν be the

usual valuation on End(G) normalized so that ν(p) = 1; we define:

N(G) ∶= n ⋅max{ν(g − 1) : e ≠ g ∈ G}

Theorem 6.2.13. Φ(EOn) = pN(G). In particular, EOn ∧X(pN(G)) is complex orientable.

Proof. Consider the pullback square

M MFG(pN(G))

Spec(W (k)[[u1, . . . , un−1]])/G MFG
φ

We claimM is an affine scheme. Let F denote a p-typical universal deformation of G, then

for each g ∈ G, we have an isomorphism

[g] ∶ F → g∗F

of formal group laws overW (k)[[u1, . . . , un−1]], by universal property. We claim that if there

is a ring map

f ∶W (k)[[u1, . . . , un−1]]→ R

and e ≠ g ∈ G such that f ○ g = f , then it is impossible for the automorphism

f∗[g] ∶ f∗F → f∗F
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to have the property that (f∗[g])(x) ≡ x mod xp
N(G)+1. Since we have chosen a p-typical

coordinate, we may write

[g](x) = x +g∗F ∑ g∗F ti(g)xp
i

Letting m denote the maximal ideal inW (k)[[u1, . . . , un−1]], for each e ≠ g ∈ G, the inequality

n ⋅ ν(g − 1) ≤ pN(G)

implies that ti(g) is a unit mod m for some i ≤ N(G), hence ti(g) is also a unit in the local

ringW (k)[[u1, . . . , un−1]]. But then if (f∗[g])(x) ≡ x mod xp
i+1, it follows that f(ti(g)) = 0,

a contradiction for a nonzero ring R.

The morphism φ is therefore affine, and hence by [65, Main Theorem], the even periodic-

refinement of Spec(W (k)[[u1, . . . , un−1]])/G with global sections EOn is what Mathew-Meier

call a 0-affine derived stack, and in particular that EOn ∧X ≃ (En ∧X)hG for any spectrum

X [65, Proposition 4.11]. The proof now follows that of Theorem 6.2.11.

Corollary 6.2.14. Let n = k(p − 1) so that we have a tower Qp ⊂ Qp(ζp) ⊂ End(G)[1/p].

Then for all 0 < k < p, ζk − 1 is a uniformizer of OQp(ζp), and since Qp(ζp)/Qp is totally

ramified, we therefore have ν(ζk − 1) = 1
p−1 , so that N(Cp) = k, and we find that

Φ(EOk(p−1)) = pk

6.3 Modular descriptions ofMER(n)

In this section, we study the stack MER(n) from a modular point of view. We provide

the promised equivalence

MER(n) ≃ Spec(E(n)∗)/C2

and use this to derive several other descriptions. At n = 1, we recover Hopkins nonsingular

quadratic equations stack forMKO, and at n = 2, we relate this stack to elliptic curves with

level structures, recovering results that are implicit in the work of [62] and [40].
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Proposition 6.3.1. Let E ∈ SpG be a G-ring spectrum with G-action so that πe∗(E) is even,

and suppose the map p in the diagram

Spec(E∗) MFG(1)

Spec(E∗)/G
p

is affine. Then if MU∧s ∧EhG ≃ (MU∧s ∧E)hG for s = 1,2, there is an equivalence of stacks

MEhG ≃ Spec(E∗)/G.

Proof. Set N ∶= Spec(E∗)/G. By affineness, we have a diagram of pullback squares

Spec(Γ(N ×MFG(1) Spec(L) ×MFG(1) Spec(L);O)) Spec(Γ(N ×MFG(1) Spec(L);O))

Spec(Γ(N ×MFG(1) Spec(L);O)) N

Spec(L) MFG(1)

p

and

Γ(N ×MFG(1) Spec(L);O) ≅ Γ(N ;p∗FMU) ≅H0(G;MU∗E) =MU∗E
hG

That the higher cohomology groups vanish follows from the same proof as used in the proof

of 6.2.11. Therefore the top right stack isMMU∧EhG , and the top left stack isMMU∧MU∧EhG .

By Theorem 2.1.44 we therefore have

N ≃M((MU∧EhG)∗,(MU∧MU∧EhG)∗) =MEhG

All equivalences we passed through are Gm-equivariant, so this equivalence is as Gm-objects

overMFG(1).

Corollary 6.3.2. We have equivalences

1. MER(n) ≃ Spec(E(n)∗)/C2
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2. MEOn/Gm ≃ Spec(W (k)[[u1, . . . , un−1]])/G

We focus now onMER(n) and give several explicit descriptions of it. For the rest of the

section, we will implicitly work 2-locally everywhere.

Proposition 6.3.3. As a Gm-stack, MER(n) is equivalent to the stack associated to the

graded Hopf algebroid

(Z[v1, . . . , v
±
n],Z[v1, . . . , v

±
n, r]/(r2 + vnr))

where ∣vi∣ = 2(2i − 1) and ∣r∣ = 2(2n − 1). Setting ri ∶= vi
vn
r, we have the following formulae

ηR(vi) = vi + 2ri

ε(vi) = vi ε(r) = 0

c(vi) = vi + 2ri c(r) = −r

∆(r) = r ⊗ 1 + 1⊗ r ∆(vi) = vi ⊗ 1

Proof. We have already shown thatMER(n) ≃ Spec(E(n)∗)/C2, so

MER(n) ≃M(E(n)∗, ∏
g∈C2

E(n)∗)

as in Example 2.1.41. The above formulae are then read off from this Hopf algebroid after

passing thru the isomorphism

Z[v1, . . . , v
±
n, r]/(r2 + vnr)→ ∏

g∈C2

E(n)∗

that sends r ↦ (0,−vn). The formula for ηR(vn) is clear, and ηR(vi) follows from the fact

that

ηR(vi/vn) = ηL(vi/vn)

since γ(vi/vn) = vi/vn.

By setting a2i−1 ∶= vi, we obtain the following modular description ofMER(n).
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Proposition 6.3.4. MER(n) is the stackification of the functor which assigns to a ring R,

the groupoid of n-tuples of quadratic equations

(q1(x), . . . , qn(x)) = (x2 + a1x, . . . , x
2 + a2n−1x)

over R, so that a2n−1 ∈ R×, with a morphism

(x2 + a1x, . . . , x
2 + a2n−1x)→ (x2 + b1x, . . . , x

2 + b2n−1x)

consisting of r ∈ R such that qn(r) = 0, and b2i−1 = a2i−1 +2r2i−1 where r2i−1 =
a2i−1

a2n−1
r. In other

words, a morphism with domain (q1, . . . , qn) is simply a choice of coordinate transformation

x↦ x + r that preserves the condition qn(0) = 0.

Proof. This description is immediate from Proposition 6.3.3 once one observes that if qn(r) =

0, qi(r2i−1) = 0 automatically. Indeed

a2n−1(r2
2i−1 + a2i−1r2i−1) = a2n−1(

a2
2i−1

a2n−1

( r2

a2n−1

+ r)) =
a2

2i−1

a2n−1

(r2 + a2n−1r) = 0

and a2n−1 is a unit.

Remark 6.3.5. This recovers Hopkins’ description ofMKO when n = 1 (see [22]).

At n = 1, Atiyah’s (KR)(2) is a form of ER(1), and at n = 2, it is a result of Hill-Meier that

the C2-spectrum Tmf1(3)[a3
−1] is a form of ER(2) [40]. In the latter case, this spectrum is

defined as the global sections of a derived stack, and so it is already related to a particular

moduli problem. More specifically,

Tmf1(3)[a3
−1] = OTMF (M1(3)[a−1

3 ])

where OTMF is the TMF sheaf. We have a Gm-equivariant diagram of pullback squares as

follows:
M1

1(3) Spec(Tmf1(3)[a−1
3 ]∗) M1

1(3)

M1
0(3) M1

0(3)[a−1
3 ] M1

0(3)

M1
ell M1

ell[a−1
3 ] M1

ell
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The superscript 1’s denote that we are working with the corresponding Gm-torsors over each

particular moduli problem, e.g. M1
0(3) here is the moduli stack of elliptic curves with Γ0(3)-

structure and a chosen nonvanishing 1-form, or equivalently with strict coordinate changes.

The top row of vertical maps are all C2-torsors, and all stacks in the top row are actually

schemes:

M1
1(3) = Spec(Z[a1, a3][∆−1])

Spec(Tmf1(3)[a−1
3 ]∗) = Spec(Z[a1, a

±
3]) =M1

1(3)[a−1
3 ]

M1
1(3) = Spec(Z[a1, a3]) ∖ (V (a1) ∩ V (a3))

where ∆ = a3
3(a3

1 − 27a3). Since Tmf1(3)[a3
−1] is a form of ER(2), it follows that the stack

M(Tmf1(3)[a3
−1])hC2

is equivalent to bothM1
0(3)[a−1

3 ] and the 2-tuples of quadratic equations stack in Proposition

6.3.4, and we would like to describe this equivalence more explicitly.

Every elliptic curve C with a point P of exact order 3 admits a unique strict isomorphism

to a curve E of the form y2 + a1xy + a3y = x3 sending P to (0,0), which is the content of the

equivalence M1
1(3) ≃ Spec(Z[a1, a3][∆−1]) [62, Proposition 3.2]. The formal inversion [−1]

on E sends (0,0) to (0,−a3), and so if we define c(E) to be the curve y2 − a1xy − a3y = x3,

the inverse of the unique strict isomorphism c(E) → E sending the torsion point (0, a3) to

(0,0) is of the form

x↦ x

y ↦ y − a1x − a3

This shows that C2 acts onM1
1(3) by sending a1 ↦ −a1 and a3 ↦ −a3. These are the same

formulae as those ofMER(2), so we see that transformations of the form

(x2 + a1x,x
2 + a3x)

rÐ→ (x2 + (a1 + 2
a1r

a3

)x,x2 + (a3 + 2r)x)
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with r2 + a3r = 0 can be repackaged as transformations

{y2 + a1xy + a3y = x3} rÐ→ {y2 + (a1 + 2
a1r

a3

)xy + (a3 + 2r)x = x3}

via x↦ x, y ↦ y + a1r
a3
x + r. This leads us to a generalization for higher ER(n).

Proposition 6.3.6. There is a Gm-equivariant equivalence of stacks

MER(n) ≃

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

● Curves C = {x2
n + a1xn−1xn +⋯ + a2n−1−1x1xn + a2n−1xn = x2

1xn−1} with a2n−1 ∈ R×

● Strict coordinate changes preserving the intersection with the line {(0, . . . ,0, xn)}
where ∣ai∣ = 2i.

Proof. Note that the equation defining C is a homogeneous equation of degree 4(2n − 1) if

we give ∣xn−k∣ = 2(2n − 2k) and ∣ak∣ = 2k. We consider strict coordinate changes of the form

x1 ↦ x1 + r11

x2 ↦ x2 + r21x1 + r22

x3 ↦ x3 + r31x2 + r32x1 + r33

⋮

xn ↦ xn + rn1xn−1 +⋯ + rn,n−1x1 + rnn

However, the intersection of C with the line {(0, . . . ,0, xn)} gives the equation x2
n+a2n−1xn =

0, and so if we restrict to strict transformations as above that preserve this intersection, we

find that the only possibilities are transformations of the form

x1 ↦ x1

⋮

xn−1 ↦ xn−1

xn ↦ xn +
ra1

a2n−1

xn−1 +⋯ + ra2n−1−1

a2n−1

x1 + r
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with r2 + a2n−1r = 0, and this is a strict isomorphism of curves from

C = {x2
n + a1xn−1xn + a3xn−2xn + a7xn−3xn +⋯ + a2n−1−1x1xn + a2n−1xn = x2

1xn−1}

to the curve

rC = {x2
n + (a1 + 2

ra1

a2n−1

)xn−1xn +⋯ + (a2n−1−1 + 2
ra2n−1−1

a2n−1

)x1xn + (a2n−1 + 2r)xn = x2
1xn−1}

Remark 6.3.7. When n = 1, we set xn−1 = 0 by convention and recover the nonsingular

quadratic equations stack. Instead of asking our transformations to preserve the intersection

with the line {(0, . . . ,0, xn)}, we could have equivalently asked it to preserve the set of

points {(0, . . . ,0), (0, . . . ,−a2n−1)} - these sheafify to give the same thing. When n = 2,

{(0,0), (0,−a2n−1)} is the subgroup generated by the 3-torsion point {(0,0)} on y2+a1xy+a3 =

x3, so this stack is equivalent toM1
0(3)[a−1

3 ].

Proposition 6.3.6 expresses the stack MER(n) in terms of some sort of arithmetic data,

and so there should be some sort of modular description of the mapMER(n) →MFG(1) in

terms of this data. At n = 1, quadratic equations are encoding flat C2-torsors, and such a

description is given in [64, Section 3.7]. At n = 2, we have the usual description of sending

an elliptic curve to its associated formal group, and the inversion map on the elliptic curve

corresponds to the formal inversion [−1] on its associated formal group. We have a third

description of this stack where such a thing has been studied at higher heights.

Proposition 6.3.8. There is a Gm-equivalence of stacks:

MER(n) ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

● Curves C = {y2n−1 = x2 +
n

∑
i=1
a2i−1xy2n−1−2i−1} with a2n−1 ∈ R×

● Strict coordinate changes y ↦ y, x↦ x +
n

∑
i=1
tiy2n−1−2i−1

preserving the points {(0,0), (−a2n−1,0)}

where ∣ai∣ = 2i.
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Proof. The proof is as before, we are simply reparametrizing the quotient stack

Spec(E(n)∗)/C2

in several different ways. The vi’s again correspond to the coefficients a2i−1, and one checks

that any strict coordinate change preserving the points {(0,0), (−a2n−1,0)} has the form

ti =
rai
a2n−1

for r satisfying r2 + a2n−1r = 0.

Remark 6.3.9. The curves in Proposition 6.3.8 are special cases of curves that have been

studied by Ravenel, Gorbunov and Mahowald [28] [81]. For example at height 3, we have

y7 = x2 + a1xy3 + a3xy2 + a7x, and they study more generally curves of the form

y7 = x2 + a1xy
3 + a3xy

2 + a7x + b1y
6 + b2y

5 + b3y
4 + b4y

3 + b5y
2 + b6

and show that their associated Jacobians admit a 1-dimensional summand of their formal

groups, and the resulting formal group is Landweber exact over the ring Z2[ai, bj].

6.4 Future directions with chromatic measure andMEG

In the previous section, we recovered Hopkins’ description of MER(1) as the moduli

stack of nonsingular quadratic equations. However, he also gives a description of the stack

associated to the connective coverMko as the moduli stack of all quadratic equations. It is

a goal of the author’s in future work to establish analogous results for the stacksMBPR⟨n⟩C2 .

A significant step in this direction would be a computation of Φ(BPR⟨n⟩C2). We have

substantial evidence of the following.

Conjecture 6.4.1. Φ(BPR⟨n⟩C2) = 2n. In particular, BPR⟨n⟩C2 ∧ X(2n) is complex ori-

entable.
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Our approach is to use the slice tower of BPR⟨n⟩. Since we are working 2-locally, it suffices

to use the spectrum T (n) in place ofX(2n) (see [77, Section 6.5]). The slice associated graded

of BPR⟨n⟩ is

HZ(2)[v1, . . . , vn]

so by smashing the slice tower with the C2-spectrum i∗T (n), one has a spectral sequence

π☀(i∗T (n) ∧Z(2))[v1, . . . , vn] Ô⇒ π☀(i∗T (n) ∧BPR⟨n⟩)

Note in particular that (i∗T (n)∧BPR⟨n⟩)C2 ≃ T (n)∧(BPR⟨n⟩)C2 , so it suffices to show that

in the integer-graded part of this spectral sequence, the E∞ page is concentrated in even

stems. Comparing this spectral sequence with its localized variant, the author has shown a

pattern of differentials for small values of n such that every odd dimensional class supports or

receives a differential. In joint work in progress with Mike Hill and Doug Ravenel, the author

has made significant progress toward a calculation of H∗(BPR⟨n⟩C2 ;F2) as an A∗-comodule.

These computations also suggest that this conjecture may be true.

Similar questions may be asked of course for the BP ((G))⟨m⟩’s as in [11]. Computations

with these theories become correspondingly difficult as ∣G∣ grows, but these analyses in the

base case G = C2 are important steps toward understanding the theories with larger groups

of equivariance.

Remark 6.4.2. The definition of the chromatic measure integer Φ(E) was inspired in part

by a similar integer defined by Chatham and Bhattacharya in [19] for E a ring spectrum:

Θ(E) = min{n > 0 : γ⊕n1 is E-orientable}

where γ1 is the universal complex line bundle over CP∞. As far as the author is aware, the

integers Φ(E) and Θ(E) coincide in every case in which both is known. Φ(E) is much easier

to compute than Θ(E) with an understanding of ME as a moduli problem. Chatham and

Bhattacharya relate Θ to A∞-MU[n] orientations where

MU[n] = Thom(BU nÐ→ BU)
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Some analysis ofMMU[n] has suggested a possible relationship between these two numbers,

but the author is not aware of any direct connection.
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