
BREDON HOMOLOGY OF REPRESENTATION SPHERES,
G = C2n

CHRISTIAN CARRICK

1. Introduction

Computing the (Z-graded) slice E2 pages for (localizations of quotients of)
BP ((C2n )) amounts to computing the Bredon homology of (actual, as opposed to
virtual) C2n-representation spheres. In the actual case, each such representation
sphere has a particularly simply G-CW structure that makes this computation
straightforward. We present this computation at n = 2, i.e. the case G = C4.
We fix a generator γ of C4. For G = C4, the real representation ring RO(C4)
is, additively, Z{1, σ, λ}, where σ is the sign representation of C4, and λ is the
2-dimensional representation where γ acts on the complex plane via multiplication
by e2πi/4. In particular, as an abelian group, RO(C4) = Z{1, σ, λ}, and in this case
RO(C4) and JO(C4) coincide.

In particular, each actual representation of C4 is of the form a + bσ + cλ for
a, b, c ≥ 0. In section 2, we describe an equivariant cell structure for Sa+bσ+cλ, in
section 3 we record some lemmas about cyclic G-modules, in section 4 we carry
out the computation in the orientable case, and in section ? we carry out the
computation in the non-orientable case.

2. Cell structures for SV

By definition, the Bredon homology of representation spheres with a trivial action
is concentrated in degree 0, i.e.

Hk(S
n;Z) =

{
0 n 6= k

Z n = k

Moreover, by use of suspension isomorphisms

Hk(S
a+bσ+cλ;Z) ∼= Hk−a(S

bσ+cλ;Z)

so it suffices to consider V = bσ + cλ for b, c ≥ 0. We give the following G-CW
structures as a 0-skeleton followed by a list of cofiber sequences.

• Sσ:
– S0

– C4/C2+ → S0 → Sσ

• Sλ:
– S0

– C4+ → S0 → (Sλ)(1)

– C4+ ∧ S1 → (Sλ)(1) → Sλ

1
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For Sσ, the map C4/C2+ → S0 is adjoint to the C2-map id : S0 → S0. For Sλ,
the map C4+ → S0 is adjoint to the nonequivariant map id : S0 → S0, and the
1-skeleton (Sλ)(1) is also called the spoke sphere. The map C4+ ∧ S1 → (Sλ)(1) is
adjoint to the nonequivariant map S1 → (Sλ)(1) that traces up one spoke and then
down an adjacent spoke.

In the general case Saσ+bλ, we simply smash these cofiber sequences together.
As an example, we give the cell structure for S2σ+2λ:

• S2σ+2λ:
– S0

– C4/C2+ → S0 → Sσ

– C4/C2+ ∧ Sσ → Sσ → S2σ

– C4+ ∧ S2σ → S2σ → (Sλ)(1) ∧ S2σ

– C4+ ∧ S1 ∧ S2σ → (Sλ)(1) ∧ S2σ → Sλ ∧ S2σ

– C4+ ∧ Sλ ∧ S2σ → Sλ ∧ S2σ → (Sλ)(1) ∧ Sλ ∧ S2σ

– C4+ ∧ S1 ∧ Sλ ∧ S2σ → (Sλ)(1) ∧ Sλ ∧ S2σ → Sλ ∧ Sλ ∧ S2σ = S2σ+2λ

An important point here is that these cofiber sequences actually do describe a G-
CW structure (not just a Rep(G)-CW structure) because the lefthand term in each
cofiber sequence supports a Frobenius isomorphism to an actual G-CW cell. For
example, we have

C4+ ∧ Sλ ∧ S2σ ' C4+ ∧ S3

One should expect to have to keep track of these identifications when using these
cell structures to compute Bredon homology (indeed, they can introduce signs in the
boundary maps). However, as we will show, all the boundary maps are completely
determined by the underlying homology and the fact that, in these cell structures,
each dimension has a single G-CW cell.

3. An algebraic lemma

Let G be a finite abelian group and suppose we have a chain complex of G-
modules

0← C0 ← C1 ← C2 ← · · · ← Cn ← 0

By applying the fixed point Mackey functor construction to this chain complex, we
get a chain complex of Mackey functors, whose homology Mackey functors H∗ we
may call the Bredon homology of C∗. Suppose we know the following:

(1) Hi(G/e) = 0 for all i < n. (i.e. the underlying homology vanishes except
in degree n).

(2) For each i, Ci ∼= Z[G/Ki] as a G-module, for some Ki ⊂ G.
In this situation, we have the following:

Lemma 3.1. For i < n, ker(di) is a cyclic G-module on a generator that is fixed
by Ki+1.

Proof. For each i < n, the differential di+1 : Ci+1
∼= Z[G/Ki+1] → ker(di), which

is adjoint to an Ki+1-equivariant map Z → ker(di), i.e. a choice of element xi ∈
(ker(di))

Ki+1 . By (1), di+1 is surjective, hence xi is a G-module generator for
ker(di). �

Hence, the differential di+1 is determined by some G-module generator xi ∈
(ker(di))

Ki+1 . We show that all such choices give the same homology:
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Lemma 3.2. In the above situation, the choice of G-module generator xi ∈ (ker(di))
Ki+1

does not change Hi or Hi+1.

Proof. Let xi, x′i ∈ (ker(di))
Ki+1 be two G-module generators of ker(di). There is

a G-module automorphism φ of ker(di) such that φ(xi) = x′i. Indeed, since xi is
a G-module generator, x′i =

∑
j

ajgj(xi) for some gj ∈ G and aj ∈ Z, hence we

let φ be the map
∑
j

ajgj ; this is a G-module endomorphism since G is abelian. It

is surjective since x′i is a G-module generator, and therefore an automorphism as
ker(di) is free abelian of finite rank.

The two differentials determined by xi and x′i respectively thus differ by a G-
equivariant automorphism of ker(di), and the lemma follows by functoriality. �

Remark 3.3. The chain complexes computing H∗(SV ) have the above properties
because the underlying homology is concentrated in degree |V |, and the cell struc-
tures in Section 2 have a single cell in each dimension.

4. The orientable case

An actual C4 representation V = bσ + cλ is orientable if and only if b is even,
hence we assume for the remainder of the section that b = 2k for k ≥ 0.

4.1. The chain complex of G-modules. We use sections 2 and 3 to determine
the chain complex of C4-modules that determinesH∗(SV ). We have (asG-modules)

Ci =


Z i = 0

Z[C4/C2] 1 ≤ i ≤ 2k

Z[C4/e] 2k + 1 ≤ i ≤ 2k + 2c

as is immediate from the cell structure in Section 2. We determine the differentials
via the lemmas in section 3. We use the following bases

Z = Z{1}
Z[C4/C2] = Z{e, γ}
Z[C4/e] = Z{e, γ, γ2, γ3}

• d1: ker(d0) = Z, so WLOG d1 may be chosen to send e 7→ 1, hence in the
above bases we have

d1 =
(
1 1

)
• di for 2 ≤ i ≤ 2k, i even: in each case, we will have ker(di−1) = Z{e− γ},

so WLOG di may be chosen to send e 7→ e − γ, hence in the above bases
we have

di =

(
1 −1
−1 1

)
• di for 2 < i < 2k, i odd: in each case, we will have ker(di−1) = Z{e + γ},

so WLOG di may be chosen to send e 7→ e + γ, hence in the above bases
we have

di =

(
1 1
1 1

)
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• d2k+1: ker(d2k) = Z{e + γ}, so WLOG d2k+1 may be chosen to send e 7→
e+ γ, hence in the above bases we have

d2k+1 =

(
1 1 1 1
1 1 1 1

)
• di for 2k + 2 ≤ i ≤ 2k + 2c, i even: ker(di−1) = Z{e− γ, γ − γ2, γ2 − γ3},

so WLOG di may be chosen to send e 7→ e − γ, hence in the above bases
we have

di =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1


• di for 2k + 2 < i < 2k + 2c, i odd: ker(di−1) = Z{e + γ + γ2 + γ3}, so

WLOG di may be chosen to send e 7→ e+ γ + γ2 + γ3, hence in the above
bases we have

di =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


We record this as follows:

0 1 2 3 · · · 2k − 1 2k

Z Z[C4/C2] Z[C4/C2] Z[C4/C2] · · · Z[C4/C2] Z[C4/C2](
1 1

)  1 −1

−1 1

 1 1

1 1

  1 −1

−1 1



2k 2k + 1 2k + 2 2k + 3 · · · 2k + 2c− 1 2k + 2c

Z[C4/C2] Z[C4/e] Z[C4/e] Z[C4/e] · · · Z[C4/e] Z[C4/e]1 1 1 1

1 1 1 1


1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1


4.2. The chain complex of fixed point Mackey functors. We now apply the
functor FP : ModC4 → MackeyC4

to the above chain complex, which sends a
C4-module to its fixed point Mackey functor. We have only three C4-modules in
appearing in the chain complex, so we record each of their fixed point Mackey
functors explicitly:

FP(Z) = Z =

Z

Z

Z

1 2

1 2



BREDON HOMOLOGY OF REPRESENTATION SPHERES, G = C2n 5

FP(Z[C4/C2]) =

Z{e+ γ}

Z[C4/C2]

Z[C4/C2]

2

FP(Z[C4/e]) =

Z{e+ γ + γ2 + γ3}

Z{e+ γ2, γ + γ3}

Z[C4/e]

This gives:

0 1 2 3 · · · 2k − 1 2k

Z Z{e+ γ} Z{e+ γ} Z{e+ γ} · · · Z{e+ γ} Z{e+ γ}

Z Z[C4/C2] Z[C4/C2] Z[C4/C2] · · · Z[C4/C2] Z[C4/C2]

Z Z[C4/C2] Z[C4/C2] Z[C4/C2] · · · Z[C4/C2] Z[C4/C2]

1

2 0 2 0 2 0

1

2

(
1 1

)  1 −1

−1 1

 1 1

1 1

  1 −1

−1 1


2

(
1 1

)
2

 1 −1

−1 1


2

1 1

1 1


2 2

 1 −1

−1 1


2

2k 2k + 1 2k + 2 2k + 3 · · ·

Z{e+ γ} Z{e+ γ + γ2 + γ3} Z{e+ γ + γ2 + γ3} Z{e+ γ + γ2 + γ3} · · ·

Z[C4/C2] Z{e+ γ2, γ + γ3} Z{e+ γ2, γ + γ3} Z{e+ γ2, γ + γ3} · · ·

Z[C4/C2] Z[C4/e] Z[C4/e] Z[C4/e] · · ·

4 0 4 0

2 2

2 2

  1 −1

−1 1

 2 2

2 2

  1 −1

−1 1


2

1 1 1 1

1 1 1 1

 
1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1
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· · · 2k + 2c− 1 2k + 2c

· · · Z{e+ γ + γ2 + γ3} Z{e+ γ + γ2 + γ3}

· · · Z{e+ γ2, γ + γ3} Z{e+ γ2, γ + γ3}

· · · Z[C4/e] Z[C4/e]

4 0

2 2

2 2

  1 −1

−1 1




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1


4.3. The homology Mackey functors. Taking homology, one has:

0 1 2 3 · · · 2k − 1 2k

Z/2{abσacλ} 0 Z/2{ab−2σ acλu2σ} 0 · · · 0 Z/4{acλuk2σ}

0 0 0 0 · · · 0 Z/2{a2cσ2
}

0 0 0 0 · · · 0 0

2

2k 2k + 1 2k + 2 2k + 3 · · · 2k + 2c− 1 2k + 2c

Z/4{acλuk2σ} 0 Z/4{uk2σac−1λ uλ} 0 · · · 0 Z{uk2σucλ}

Z/2{a2cσ2
} 0 Z/2{u2σ2

a2c−2σ } 0 · · · 0 Z{uc2σ2
}

0 0 0 0 · · · 0 Z

2 2 2

2

5. The non-orientable case

An actual C4 representation V = bσ+cλ is non-orientable if and only if b is odd,
hence we assume for the remainder of the section that b = 2k + 1 for k ≥ 0.

5.1. The chain complex of G-modules. We use sections 2 and 3 to determine
the chain complex of C4-modules that determinesH∗(SV ). We have (asG-modules)

Ci =


Z i = 0

Z[C4/C2] 1 ≤ i ≤ 2k + 1

Z[C4/e] 2k + 2 ≤ i ≤ 2k + 1 + 2c
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as is immediate from the cell structure in Section 2. We determine the differentials
via the lemmas in section 3. We use the following bases

Z = Z{1}
Z[C4/C2] = Z{e, γ}
Z[C4/e] = Z{e, γ, γ2, γ3}

• d1: ker(d0) = Z, so WLOG d1 may be chosen to send e 7→ 1, hence in the
above bases we have

d1 =
(
1 1

)
• di for 2 ≤ i ≤ 2k, i even: in each case, we will have ker(di−1) = Z{e− γ},

so WLOG di may be chosen to send e 7→ e − γ, hence in the above bases
we have

di =

(
1 −1
−1 1

)
• di for 2 < i ≤ 2k+1, i odd: in each case, we will have ker(di−1) = Z{e+γ},

so WLOG di may be chosen to send e 7→ e + γ, hence in the above bases
we have

di =

(
1 1
1 1

)
• d2k+2: ker(d2k+1) = Z{e − γ}, so WLOG d2k+2 may be chosen to send
e 7→ e− γ, hence in the above bases we have

d2k+2 =

(
1 −1 1 −1
−1 1 −1 1

)
• di for 2k+2 < i ≤ 2k+1+2c, i odd: ker(di−1) = Z{e+γ, γ+γ2, γ2+γ3},

so WLOG di may be chosen to send e 7→ e + γ, hence in the above bases
we have

di =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


• di for 2k + 4 ≤ i ≤ 2k + 2c, i even: ker(di−1) = Z{e − γ + γ2 − γ3}, so

WLOG di may be chosen to send e 7→ e− γ + γ2 − γ3, hence in the above
bases we have

di =


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


We record this as follows:

0 1 2 3 · · · 2k 2k + 1

Z Z[C4/C2] Z[C4/C2] Z[C4/C2] · · · Z[C4/C2] Z[C4/C2](
1 1

)  1 −1

−1 1

 1 1

1 1

 1 1

1 1
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2k + 1 2k + 2 2k + 3 2k + 4 · · · 2k + 2c 2k + 1 + 2c

Z[C4/C2] Z[C4/e] Z[C4/e] Z[C4/e] · · · Z[C4/e] Z[C4/e] 1 −1 1 −1

−1 1 −1 1


1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1



5.2. The chain complex of fixed point Mackey functors. Applying FP(−)
as above, we have

0 1 2 3 · · · 2k 2k + 1

Z Z{e+ γ} Z{e+ γ} Z{e+ γ} · · · Z{e+ γ} Z{e+ γ}

Z Z[C4/C2] Z[C4/C2] Z[C4/C2] · · · Z[C4/C2] Z[C4/C2]

Z Z[C4/C2] Z[C4/C2] Z[C4/C2] · · · Z[C4/C2] Z[C4/C2]

1

2 0 2 0 0 2

1

2

(
1 1

)  1 −1

−1 1

 1 1

1 1

 1 1

1 1


2

(
1 1

)
2

 1 −1

−1 1


2

1 1

1 1


2 2

1 1

1 1


2

2k + 1 2k + 2 2k + 3 2k + 4 · · ·

Z{e+ γ} Z{e+ γ + γ2 + γ3} Z{e+ γ + γ2 + γ3} Z{e+ γ + γ2 + γ3} · · ·

Z[C4/C2] Z{e+ γ2, γ + γ3} Z{e+ γ2, γ + γ3} Z{e+ γ2, γ + γ3} · · ·

Z[C4/C2] Z[C4/e] Z[C4/e] Z[C4/e] · · ·

0 2 0 2

 2 −2

−2 2

 1 1

1 1

  2 −2

−2 2

 1 1

1 1


2

 1 −1 1 −1

−1 1 −1 1

 
1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1
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· · · 2k + 2c 2k + 2c+ 1

· · · Z{e+ γ + γ2 + γ3} Z{e+ γ + γ2 + γ3}

· · · Z{e+ γ2, γ + γ3} Z{e+ γ2, γ + γ3}

· · · Z[C4/e] Z[C4/e]

0 2

 2 −2

−2 2

 1 1

1 1




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1



5.3. The homology Mackey functors. Taking homology, one has:

0 1 2 3 · · · 2k 2k + 1

Z/2{abσacλ} 0 Z/2{ab−2σ acλu2σ} 0 · · · Z/2{aσacλuk2σ} 0

0 0 0 0 · · · 0 Z/2{a2cσ2
}

0 0 0 0 · · · 0 0

2k + 2 2k + 3 2k + 4 · · · 2k + 2c

Z/2{aσuk2σac−1λ uλ} 0 Z/2{aσuk2σu2λa
c−2
λ } · · · Z/2{aσuk2σucλ}

0 Z/2{u2σ2
a2c−2σ } 0 · · · 0

0 0 0 · · · 0

2k + 1 + 2c

0

Z/2{uc2σ2
}

0
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6. The positive cone

Putting it altogether we can describe the ring⊕
a∈Z,b,c≥0

H∗(S
a+bσ+cλ;Z) ∼= Z[u±, aσ, aλ, u2σ, uλ]/(2aσ, 4aλ, a2σuλ = 2aλu2σ)

where u ∈ H1(S
1;Z) ∼= Z is a generator. It’s really more natural just to say that⊕

b,c≥0

πC4

∗−bσ−cλ(HZ) = Z[aσ, aλ, u2σ, uλ]/(2aσ, 4aλ, a2σuλ = 2aλu2σ)
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