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1. INTRODUCTION

Computing the (Z-graded) slice Es pages for (localizations of quotients of)
BP(2") amounts to computing the Bredon homology of (actual, as opposed to
virtual) Can-representation spheres. In the actual case, each such representation
sphere has a particularly simply G-CW structure that makes this computation
straightforward. We present this computation at n = 2, i.e. the case G = Cjy.
We fix a generator v of Cy. For G = Cy, the real representation ring RO(Cy)
is, additively, Z{1,0, A}, where o is the sign representation of Cy4, and A is the
2-dimensional representation where v acts on the complex plane via multiplication
by €274, In particular, as an abelian group, RO(Cy) = Z{1,0, A}, and in this case
RO(Cy) and JO(C4) coincide.

In particular, each actual representation of C4 is of the form a 4 bo + c\ for
a,b,c¢ > 0. In section 2, we describe an equivariant cell structure for Setbo+er in
section 3 we record some lemmas about cyclic G-modules, in section 4 we carry
out the computation in the orientable case, and in section ? we carry out the
computation in the non-orientable case.

2. CELL STRUCTURES FOR SV

By definition, the Bredon homology of representation spheres with a trivial action
is concentrated in degree 0, i.e.

0 n#k

Hy(S™2) = {Z n=k

Moreover, by use of suspension isomorphisms
Ek(sa-i-ba-‘rc)\; Z) ~ Ekia(sbo-‘rc)\; Z)

so it suffices to consider V' = bo + ¢ for b,c > 0. We give the following G-CW
structures as a 0-skeleton followed by a list of cofiber sequences.
o 57
_ g0
— C’4/C’2Jr — 80 5 §o
o SN
— g9
— Oyy — 8% = (SHD
— Cyp NS — (SHD — g
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For 57, the map Cy4/C, — S° is adjoint to the Cy-map id : S° — S°. For S,
the map Cy, — SY is adjoint to the nonequivariant map id : S — S°, and the
1-skeleton (S*)() is also called the spoke sphere. The map Cy, A S* — (S*)M) is
adjoint to the nonequivariant map S* — (S ’\)(1) that traces up one spoke and then
down an adjacent spoke.
In the general case ST we simply smash these cofiber sequences together.
As an example, we give the cell structure for S2°+2A:
o G20+2X,

— g0

- C4/CQ+ — 80 5 59

- C4/CQ+ ANST — 8579 — SQJ

— Cyp NS? — 827 — (M) A §20

— Cyp ANSTAS% — (SN A §20 5 §A A G20

— Cyp NSMAS?27 — SA N S20 — (SA)D A SH A S20

— Oy NSTASAMAS?7 — (SN ASAA 27 5 SANSAA 20 = §20+22
An important point here is that these cofiber sequences actually do describe a G-
CW structure (not just a Rep(G)-CW structure) because the lefthand term in each
cofiber sequence supports a Frobenius isomorphism to an actual G-CW cell. For
example, we have

Cuy NSYANS?7 ~Cy N S?

One should expect to have to keep track of these identifications when using these
cell structures to compute Bredon homology (indeed, they can introduce signs in the
boundary maps). However, as we will show, all the boundary maps are completely
determined by the underlying homology and the fact that, in these cell structures,
each dimension has a single G-CW cell.

3. AN ALGEBRAIC LEMMA

Let G be a finite abelian group and suppose we have a chain complex of G-
modules
0+ Co+Cr1Co---+Cp,<+0

By applying the fixed point Mackey functor construction to this chain complex, we
get a chain complex of Mackey functors, whose homology Mackey functors H, we
may call the Bredon homology of C,. Suppose we know the following:

(1) H;(G/e) =0 for all i < n. (i.e. the underlying homology vanishes except

in degree n).
(2) For each i, C; = Z|G/K,] as a G-module, for some K; C G.

In this situation, we have the following:

Lemma 3.1. For i < n, ker(d;) is a cyclic G-module on a generator that is fixed
by Kiq1.

Proof. For each i < n, the differential d;11 : Ciy1 = Z[G/K;+1] — ker(d;), which
is adjoint to an Kj;;q-equivariant map Z — ker(d;), i.e. a choice of element z; €
(ker(d;))X+1. By (1), diyy is surjective, hence z; is a G-module generator for
ker(d;). O

Hence, the differential d;;1 is determined by some G-module generator x; €
(ker(d;))%i+1. We show that all such choices give the same homology:
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Lemma 3.2. In the above situation, the choice of G-module generator x; € (ker(d;))
does not change H; or H, .

Proof. Let x;, 2} € (ker(d;))X#+1 be two G-module generators of ker(d;). There is

a G-module automorphism ¢ of ker(d;) such that ¢(z;) = z;. Indeed, since x; is

a G-module generator, = = Y a;jg;(z;) for some g; € G and a; € Z, hence we
J

let ¢ be the map ) a;g;; this is a G-module endomorphism since G is abelian. It
J

is surjective since z} is a G-module generator, and therefore an automorphism as
ker(d;) is free abelian of finite rank.

The two differentials determined by x; and x} respectively thus differ by a G-
equivariant automorphism of ker(d;), and the lemma follows by functoriality. O

Remark 3.3. The chain complexes computing H,(S") have the above properties
because the underlying homology is concentrated in degree |V|, and the cell struc-
tures in Section 2 have a single cell in each dimension.

4. THE ORIENTABLE CASE

An actual Cy4 representation V = bo + ¢ is orientable if and only if b is even,
hence we assume for the remainder of the section that b = 2k for k > 0.

4.1. The chain complex of G-modules. We use sections 2 and 3 to determine
the chain complex of C4-modules that determines H,(S"). We have (as G-modules)
7z 1=0
Cy = Z[Cy)Cy) 1<i <2k
Z[Csle] 2k+1<i<2k+2c

as is immediate from the cell structure in Section 2. We determine the differentials
via the lemmas in section 3. We use the following bases

7 =17{1}
Z[C4/Co) = Z{e,v}
Z[C4/€] = Z{67’Y772773}

e dy: ker(dy) = Z, so WLOG d; may be chosen to send e +— 1, hence in the
above bases we have

dy=(1 1)

e d; for 2 < < 2k, i even: in each case, we will have ker(d;_;) = Z{e — v},
so WLOG d; may be chosen to send e — e — v, hence in the above bases

we have
1 -1
=4 )

o d; for 2 < i < 2k, i odd: in each case, we will have ker(d;_1) = Z{e + v},
so WLOG d; may be chosen to send e — e + v, hence in the above bases

we have
1 1
=i 1)
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o dori1: ker(doy) = Z{e + ~}, so WLOG dai+1 may be chosen to send e +—
e + v, hence in the above bases we have

g (11

2+1=(1 1 1 1
o d; for 2k +2 < i < 2k + 2¢, i even: ker(d;_1) = Z{e — v,7 — 7%, 7> — 73},
so WLOG d; may be chosen to send e — e — 7, hence in the above bases

we have
1 0 0 -1
-1 1 0 0
=1y 1 1 o
0 0o -1 1

o d; for 2k +2 < i < 2k + 2¢, i odd: ker(d;_1) = Z{e + v+ +* + 3}, so
WLOG d; may be chosen to send e — e + v 4+ +% 4+ 3, hence in the above
bases we have

—_ = = =

1
1
1
1

— =

We record this as follows:

0 1 2 3 2k -1 2k

zZ an 2[04/02& — >Z[C4/02] m Z[C1)Cy] — e 2[04/02& — >Z[c4/02]

2k 2k +1 2k 4 2 2k + 3 2k +2c—1 2k + 2¢
Z|C4)Ca)] +—— Z[Cu/e] «— Z[C1)e] +—— Z|Cu/e] Z|Cy/e] «+—— Z|Cy/e]
1 1 1 1 1 0 0 —1Y1 1 1 1 1 0 0 —1
(1 1 1 1] -1 1 0 0 1 1 1 1 —1 1 0 0
0 —1 1 0 1 1 1 1 0 —1 1 0
0 0 —1 1 1 1 1 1 0 0 —1 1

4.2. The chain complex of fixed point Mackey functors. We now apply the
functor FP : Modg, — Mackey, to the above chain complex, which sends a
Cy-module to its fixed point Mackey functor. We have only three Cy-modules in
appearing in the chain complex, so we record each of their fixed point Mackey
functors explicitly:
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Z{e + 7} Z{e +v+v*++°%}
FP(Z[Cy/Co]) = 7[Cy/C) FP(Z[Cy/e]) = Z{e+ 2~ +~3)
Z|C4/C5] Z|Cy/e]
This gives:
0 1 2 3 s 2k —1 2k

72— Z{e+~} « 21— Z{e+ 7} «2— Z{e+7} «2— .. 22— Z{e+~} <2 Z{e+~}

RS PRSP PR A
T T T

Z C4/CQ&<*ZC4/CQ DZCZ;/CQ} C4/CQ&<*ZC4/CQ

r -1 1 -1
-1 1 -1 1

2k 2k +1 2k +2 2k +3

Z{e+7} +2— Z{e+v+2 + 7%} 2= Z{e + 7+ > + 7} 2 Z{e+ 7+ 2 + 7%} <2 -

L) () () (]

ZICy/Co) —— Z{e+ v+ 7} 0——Z{e+ 7,7 +7°} ¢—— Z{e+ 7}, v+ 73} — -

23 ) O G R O N O R G

Z[Cy/C3] s Z[Cy/€] Z[Cy/e] Z[Cy/e] —— -
11101 1 0o o0 -1 1 1 1 1 1 0o o -1
(1 11 1) -1 1 0 o0 1 1 1 1 -1 1 o0
0 -1 1 0 11 1 1 0 -1 1 0
o 0o -1 1 1111 o 0o -1 1
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2k +2c—1 2k + 2¢

e Z{e+ v+ 2+ %) 2 Z{e+ 7+ 72 +97)

() ()

e Z{e+ v+ —— Z{e+~* v+ 7%}
)

() G

—_

- Z[Cy /€] Z[Cy/e]
1 1 1 1 0o -1
11 1 1 ~1 0 0
11 1 1 -1 1 o0
11011 0 -1 1

4.3. The homology Mackey functors. Taking homology, one has:

2k — 1
Z/2{abaS} 0 Z/2{a% 2aSus,} 0 e 0
o0 00 L)
0 0 0 0 0
L) L) L) L)
0 0 0 0 0
2k 2k +1 2k + 2 2k +3
Z/4{aSub, } 0 Z/4{uk a5 uy} 0
(3 () ()2 L)
Z/2{a2%} 0 7.)2{ug,, a2 0
» L) ] L)
0 0 0 0

5. THE NON-ORIENTABLE CASE

An actual Cy representation V' = bo + ¢ is non-orientable if and only if b is odd,

hence we assume for the remainder of the section that b = 2k + 1 for £ > 0.

5.1. The chain complex of G-modules. We use sections 2 and 3 to determine
the chain complex of Cy-modules that determines H,(S"). We have (as G-modules)

z i=0
Ci={Z[Cy)Cs] 1<i<2k+1
Z[Cyfe]  2k+2<i<2%k+1+2¢

2k
Z/A{afub, }
()
Z/2{a2
()
0
2k +2c—1 2k + 2¢
0 Z{ub,us}
() ([ >
0 Z{us,,}
() [ ),
0 7
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as is immediate from the cell structure in Section 2. We determine the differentials
via the lemmas in section 3. We use the following bases

Z = 7{1}
Z[C4/Co) = Z{e,v}
Z[Czl/e] = 2{6777’72773}

e dy: ker(dy) = Z, so WLOG d; may be chosen to send e — 1, hence in the
above bases we have

di=(1 1)

e d; for 2 <4 < 2k, i even: in each case, we will have ker(d;,_1) = Z{e — v},
so WLOG d; may be chosen to send e — e — =y, hence in the above bases

we have
1 -1
=4 7)

o d; for 2 < i <2k+1,io0dd: in each case, we will have ker(d;—1) = Z{e+~},
so WLOG d; may be chosen to send e — e + v, hence in the above bases

we have
1 1
=i 1)

o dopio: ker(dapi1) = Z{e — v}, so WLOG daj42 may be chosen to send
e — e — 7, hence in the above bases we have

1 -1 1 -1
dokt2 = (_1 1 -1 1 >
o d; for 2k +2 < i < 2k+1+2c, i odd: ker(d;_1) = Z{e+~,v+v%, v +73},

so WLOG d; may be chosen to send e — e + 7, hence in the above bases
we have

(e
= = O

d; =

o
-0 O
= o O -

0

o d; for 2k + 4 < i < 2k + 2¢, i even: ker(d;_1) = Z{e — v+ % — 3}, so
WLOG d; may be chosen to send e + e — v +v% — 43, hence in the above
bases we have

0 1 2 3 2k 2k+1

1 1
—1 1 1 1 1 1

Z m Z[C4/CQ& (17_12[04/02} . Z[C4/CQ] S s/ Z[C4/CQ] 2[04/02}
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2k+1 2k +2 2k+3 2k +4 2k + 2c 2k+1+42c
[C4/C3] «—— Z[Cyle] «— ZC4/e] —— Z[Cyfe] «—— -+ «—— Z[Cy/e] «—— Z[Cy/e]
1 1 1 -1Y1 o o 1 -1 1 -1 1 0 0 1
Zl 1 -1 1)1 1 0 ofl-1 1 -1 1 1 1 0 0
o 1 1 o1 -1 1 -1 0 1 1 0
0 0 1 1A-1 1 -1 1 0 0 1 1
5.2. The chain complex of fixed point Mackey functors. Applying FP(—)
as above, we have
0 1 2 3 2k 2k+1

72— Z{e+~} «2— Z{e+~} «2— Z{e+7} +2— - 2 Z{e+7} +2— Z{e+}

192 g/jc zcg* /jc [g /50} Z[g /jc] Z[g /501
lggm / S ) / m [4/52} [Q?Q]1 D [Q?Q]
Zm [C4/Co <—>ZC4 ] mzq Oy ¢ o —— Z[C4/Ch ﬂZC4 C,

2k +1 2k +2 2k +3 2k +4

Z{e+7} +2— Z{e+v+72 + 7%} 2= Z{e+ 7+ 2 + 7} «2— Z{e+ v+ 2 + 7%} 2 -

L) () () (]

ZICy/Co) ——Z{e + v+ 7} ¢—— Z{e+ ¥, v +7°} /#——Z{e+ Vv +7°} ¢— -

51 s A R ) N T e B O R

Z[Cy4/C5] <7 Z|Cy /€] Z[Cy/e] Z[Cy/e] 4——— -
1 1 -1 1 0 0 1 1o-1 1 -1 1 0 0 1
<—1 1 -1 15 1 1 0 0 -1 1 -1 1 1 1 0 0
01 1 0 1 -1 1 -1 01 1 0
00 1 1 -1 1 -1 1 00 1 1
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2k + 2¢ 2k +2c+1

el Z{e+ v+ 2+ %) 2 Z{e+7+ 72 +97)

() ()

o Z{e + 7,y + 77} —— Z{e +9% v +7°}

S R R I B

—

- Z[|Cy /€] Z[Cy/e]
1 -1 1 -1 1 0 0 1
-1 1 -1 1 11 0 0
1 -1 1 -1 01 1 0
-1 1 -1 1 00 1 1

5.3. The homology Mackey functors. Taking homology, one has:

0 1 2 3
Z/2{abas} 0 Z/2{ab a5 us } 0
S O N A
0 0 0 0
A L) L)
0 0 0 0
2% + 2 2% +3 9% + 4
Z/2{agugga§71u,\} 0 Z/2{agu’50u§\a§\72}
) () L)
0 7.)2{us,, a2 0
() (] ()
0 0 0
2k+1+2c
0
()
7] 2{us,, }

L)

0

2k 2k+1
Z/Q{agaf\u’gg} 0
L) ()
0 Z/2{aZ;}
L) ]
0 0
2k 4+ 2c
Z/2{asus,us }
L)
0
L)
0
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6. THE POSITIVE CONE

Putting it altogether we can describe the ring
P H.(STNL) = ZuE, g, ax, 20, un]/ (200, 4ax, aZuy = 2axuz,)
a€Z,b,c>0
where u € Hy(SY;Z) = Z is a generator. It’s really more natural just to say that

EB 7 AHZ) = Zla,, ax, sy, up]/(2a,, 4ay, a2uy = 2ayuz,)
b,c>0
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